

Erko Targamaa

Rekonstrueeritava katlamaja seadistamine ja testimine Masina 18 näitel

LÕPUTÖÖ

Tehnikainstituut Elektritehnika õppekava Juhendaja: A. Rudz

Tallinn 2023

Mina,

Erko Targamaa,

tõendan, et lõputöö on minu kirjutatud. Töö koostamisel kasutatud teiste autorite, sh juhendaja teostele on viidatud õiguspäraselt.

Kõik isiklikud ja varalised autoriõigused käesoleva lõputöö osas kuuluvad autorile ja lepinguliselt Eltech Solutions osaühingule ning need on kaitstud autoriõiguse seadusega.

Juhendajad Andrei Rudz ja Marko Lillepuu, allkirjastatud digitaalselt.

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks

Mina, Erko Targamaa

sünnikuupäev: 02.05.1999

annan Tallinna Tehnikakõrgkoolile (edaspidi kõrgkool) tasuta loa (lihtlitsentsi) enda loodud teose

Rekonstrueeritava katlamaja seadistamine ja testimine Masina 18 näitel

- 1. elektroonseks avaldamiseks kõrgkooli repositooriumi kaudu;
- kui lõputöö avaldamisele on instituudi direktori korraldusega kehtestatud tähtajaline piirang, lõputöö avaldada pärast piirangu lõppemist.

Olen teadlik, et nimetatud õigused jäävad alles ka autorile ja kinnitan, et:

- lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete kaitse seadusest tulenevaid ega muid õigusi;
- 2. PDF-failina esitatud töö vastab täielikult kirjalikult esitatud tööle.

Tallinnas, allkirjastatud digitaalselt.

SISUKORD

LÜ	HEN	DID		6
SIS	SEJU	JHA	TUS	7
1.	OB	JEK	TI TUTVUSTUS	9
]	.1.	Van	a jaotusseade	9
]	.2.	Uus	jaotusseade	10
2.	NO	RMI	D	12
2	2.1.	Obj	ekti erinõuded	12
2	2.2.	Nor	mide kirjeldus	12
	2.2.	.1.	Tehniline lahendus	13
	2.2.	.2.	6 kV jaotusseade	13
	2.2.	.3.	RTU ja side	15
	2.2.	.4.	Alalisvoolukeskus	15
	2.2.	.5.	Trafod	15
	2.2.	.6.	Madalpinge jaotusseade	16
	2.2.	.7.	Maandamine	16
	2.2.	.8.	Kaabliteed	16
	2.2.	.9.	Sekundaarkaabeldus	17
	2.2.	.10.	Üldehitus	17
	2.2.	.11.	Üldine	17
3.	SEA	ADM	IETE VALIK	19
2	8.1.	Võr	gulüliti Siemens Ruggedcom RSG2100	19
2	3.2.	Sch	neider Saitel DR HUe ja Saitel DR ab DIDO	20
	3.2.	.1.	Saitel DR HUe	20
	3.2.	2.	Saitel DR ab DIDO	22
	3.3.	Terr	minalid P3U ja P3F	22
	3.3.	.1.	Schneider P3U30	22
	3.3.	.2.	Schneider P3F30	24

3.4. Multimeeter Integra 1630	
4. SEADISTUS	27
4.1. Võrgulüliti seadistamine	27
4.2. Terminalide seadistamine	
4.2.1. Üldine	
4.2.2. Mõõtmised	
4.2.3. Sisendid ja väljundid	
4.2.4. Kaitsed	
4.2.5. Maatriks	
4.2.6. Logid	
4.2.7. Kommunikatsioon	
4.3. Terminalide testimine	
4.3.1. Omicron CMC 356	
4.3.2. Testimismoodul	
4.3.3. Ühendamine ja testimine	41
4.4. <i>RTU</i> seadistamine	
4.5. <i>RTU</i> testimine	
4.6. Vead	
4.7. Protokollid	53
4.8. Dokumentatsioon	
KOKKUVÕTE	59
SUMMARY	60
VIIDATUD ALLIKAD	61
LISAD	
Lisa 1. Vampset skaleerimine (kuvatõmmis programmist)	64
Lisa 2. Vampset Miimika (kuvatõmmis programmist)	65
Lisa 3. Vampset ekraanil mõõtmised ja info (kuvatõmmis programmist)	
Lisa 4. Vampset lühiste salvestamine (kuvatõmmis programmist)	67
Lisa 5. Vampset mõõtmised (kuvatõmmis programmist)	
Lisa 6. Vampset sisendite nimed (kuvatõmmis programmist)	69
Lisa 7. Vampset sisendite viide ja olek (kuvatõmmis programmist)	70
Lisa 8. Vampset väljundid (kuvatõmmis programmist)	71
Lisa 9. Vampset virtuaalsed väljundid (kuvatõmmis programmist)	
Lisa 10. Vampset indikaatorite nimed (kuvatõmmis programmist)	73

Lisa 11.	Vampset objektid (kuvatõmmis programmist)	.74
Lisa 12.	Vampset loogika (kuvatõmmis programmist)	.75
Lisa 13.	Vampset voolulõike aeglasem aste (kuvatõmmis programmist)	.76
Lisa 14.	Vampset maatriks tabel (kuvatõmmis programmist)	.77
Lisa 15.	Vampset logid (kuvatõmmis programmist)	.78
Lisa 16.	Vampset aasta maksimum väärtused (kuvatõmmis programmist)	.79
Lisa 17.	Vampset logimis seaded (kuvatõmmis programmist)	.80
Lisa 18.	Vampset ringliiklus (kuvatõmmis programmist)	.81
Lisa 19.	Vampset andme kaart (kuvatõmmis programmist)	.82
Lisa 20.	Test Universe analoog väljundid (kuvatõmmis programmist)	.83
Lisa 21.	Test Universe analoog sisendid (kuvatõmmis programmist)	.84
Lisa 22.	Test Universe üldandmed (kuvatõmmis programmist)	.85
Lisa 23.	Klemmid	.86
Lisa 24.	Voolusisendid fiidriterminali	.87
Lisa 25.	Pingesisendid fiidriterminalil	.88
Lisa 26.	Reserv releed fiidriterminalil	.89
Lisa 27.	Summavoolutransformaatorid keldris	.90
Lisa 28.	Easergy Builder and mepuntkid (kuvatõmmis programmist)	.91
Lisa 29.	Easergy Builder mõõtmised (kuvatõmmis programmist)	.92
Lisa 30.	Easergy Builder signaalid valmis (kuvatõmmis programmist)	.93
Lisa 31.	Tavakontroll	.94
Lisa 32.	Fiidriterminali testraport	.95
Lisa 33.	Kaitsesätete arvutus	.96
Lisa 34.	Digiallkirjastatud protokollid	.97
Lisa 35.	Lühijuhend kaitsereleele P3U	.98

LÜHENDID

ΟÜ	– osaühing				
FAT	- factory acceptance test ehk tehase vastuvõtu test				
CE	– Conformité Européene ehk Euroopa vastavus				
RTU	- remote terminal unit ehk kaugjuhtimise terminali üksus				
Hz	– herts ehk sagedus				
VDC	– voltides alalispinge				
A-FLR	FLR – all sided switchgear (F-front, L-lateral, R-rear) ehk kõikidest külgedest ligipääsetav				
	lülitusseadet, mis on varustatud kaitsevahenditega				
SCADA	- supervisory control and data acquisition ehk järelevalve ja andmete kogumise				
	süsteem [1]				
kVA	– kilovoltamper				
L	– <i>line</i> ehk faas				
Ν	– neutral ehk neutraal				
PE	– kaitsemaandus				
IP	- standardiga määratud kaitseastme numbriline näit, mis iseloomustab elektriseadme				
	kaitstust välismõjude, sealhulgas tolmu ja vee vastu [2]				
SF6	– gaas mis on suurepärase isolatsiooni ja kaarekustutusomadusega [3]				
LED	 – LED ehk valgusdiood on pooljuhtvalgusallikas [4] 				
MCMK	– keskpingekaabel				
MCMO	– õhuliinikaabel				
RJ	– registered jack ehk standard pistik ühendus [5]				
RSTP	- rapid spanning tree protocol ehk ringliiklus				

SISSEJUHATUS

Eltech Solutions OÜ on Eestis tegutsev ettevõte, mille põhitegevusaladeks on madal-, kesk-, ja kõrgepinge elektripaigaldiste projekteerimine, nõustamine, ehitamine, seadistamine, käit ja müük. Ettevõte on pühendunud oma klientidele kvaliteetsete ja usaldusväärsete lahenduste pakkumisele, mis vastavad tänapäevastele nõuetele ja standarditele. Lisaks on ettevõte sertifitseeritud ja on ametlik Eesti Elektritööde Liidu liige. Üheks Eltech Solutions OÜ oluliseks projektiks oli katlamaja 6 kV jaotusseadme rekonstrueerimine.

Jaotusseadme rekonstrueerimise vajadus tulenes asjaolust, et olemasolev jaotusseade ei vastanud tänapäevastele tehnilistele ja ohutusnõuetele. Katlamaja jaotusseade on tähtis element katlamaja töökindluses, mis tagab elektrienergia jaotamise katlamajas. Rekonstrueerimise eesmärk oli moderniseerida jaotusseade, et tagada vastavus normidele ja standarditele ning lisaks suurendada katlamaja töökindlust ja efektiivsus. Projekti raames viidi läbi põhjalikud analüüsid ja arvutused, et kindlaks määrata jaotusseadme optimaalne konfiguratsioon ja sobivad seadmed ning komponendid. Rekonstrueerimistööde käigus tehti palju erinevaid aga olulisi muudatusi, sealhulgas paigaldati uus jaotusseade, uued kaitsesüsteemid, mõõteseadmed ja juhtimissüsteem.

Projekti edukaks elluviimiseks Eltech Solutions OÜ poolt nõudis mitmete inseneride ja tehnikute teadmisi ja kogemusi elektripaigaldiste projekteerimisel, ehitamisel ja seadistamisel. Väga oluline oli tagada tööde kvaliteet ja ohutus ning et seadmed vastaksid nõuetele ja standarditele. Tulemuseks oli kaasaegne ja töökindel jaotusseade, mis suurendab katlamaja usaldusväärsust ja ohutust. Rekonstrueeritud jaotusseade vastab kõigile kehtivatele nõuetele ja standarditele, mis on lisaks varustatud kaasaegsete seadmete ja süsteemidega, mis võimaldavad jälgida ja juhtida jaotusseadme tööd ning peamiselt kiirelt reageerida riketele ja hädaolukordadele.

Lõputöö tulemused näitavad Eltech Solutions OÜ võimekust pakkuda kõrgtasemel lahendusi elektripaigaldiste valdkonnas, mis parandavad elektrienergia jaotamise ja kasutamise kvaliteeti ning tagada elektripaigaldistele vastavus normidele ja standarditele. Lõputöö kinnitab ettevõtte

professionaalsust ja kompetentsust elektripaigaldiste projekteerimise, nõustamise, ehitamise, seadistamise ja käitamise alal.

Töö koosneb neljast peatükist. Esimeses pealkirjas kirjeldan objekti ja miks oli vajadus teha rekonstrueerimistöid. Teises peatükis kirjeldan norme, mille alusel toimus seadmete valik ja testimine. Kolmandas kirjeldan valitud seadmeid ja nende vastavust normidele. Neljandas kirjeldan seadistus- ja testimisprotsessi ning vastavust eesmärgile ja näiteid dokumentatsioonist.

1. OBJEKTI TUTVUSTUS

1.1. Vana jaotusseade

Vana jaotusseadme tüüp on TAVRIDA 7 kV keskpingejaotusseade. Vana jaotusseadet näeb fotol (Foto 1).

Foto 1. Vana jaotusseade

Uue jaotusseadme kasutuselevõtt on oluline samm elektripaigaldiste jaotusseadme moderniseerimisel ja töökindluse tõstmisel. Tänu elektriseadmete kiirele arengule on võimalik parandada jaotusseadme efektiivsust, suurendada ohutust ja usaldusväärsust ning vähendada ülalpidamiskulusid. Uue jaotusseadme kasutuselevõtt võimaldab paremini jälgida jaotusseadme tööd

ja kiiremini reageerida riketele ja hädaolukordadele, mida vana jaotusseade ei suutnud. Lisaks eelmainitud eelistele on uus jaotusseade võimeline üle minema kõrgemale pingele 10 kV aga vana jaotusseade talus maksimaalselt kuni 7 kV. Vana jaotusseade ei suutnud taluda enam suuremaid koormusi, mis on vajalik ja tingitud katlamaja suurenenud vajadusest linna elanike elamute kütmisel.

1.2. Uus jaotusseade

Uus jaotusseade on SEL TPR6, mis on kujutatud fotol (Foto 2).

Foto 2. Uus jaotusseade SEL TPR6

Esiteks on seda toodet väga paindlik paigaldada, kuna see on modulaarne süsteem. See tähendab, et iga jaotusseadme lahter on eraldi moodul, mida saad tellida vastavalt konkreetsele vajadusele. Paindlikkus tähendab ka seda, et tulevikus on võimalik seadet laiendada, lisades juurde uusi mooduleid ja lahendusi. Peale selle on jaotusseadet võimalik remontida või hooldada pinge all, mis suurendab jaotusseadme kasutusmugavust ja ohutust. Teiseks on seade kompaktsete mõõtmetega, mis soodustab transporti ja paigaldustöid. Väiksemat mõõtmed võimaldavad jaotusseadet paigaldada kitsamates tingimustes. Kolmandaks on oluline aspekt ohutus. Testimise käigus ei pea latistust mitte

kuskilt lahti ühendama, kuna latistus on seadme sisse ehitatud ning sinna ei pääse keegi ligi ilma tööriistadeta. See maandab elektriohutusega seotud riske ja tagab suurema turvalisuse. Lisaks on jaotusseadmel ehitatud võtmesüsteem. Seega on võimalik fiider ära maandada ja lülitamissüsteemi ära lukustada, et kellelgi ei oleks võimalik seda ilma võtmeta uuesti sisse lülitada. Jaotusseadme kõik lülitid on paigaldatud kas vaakumkambrisse või *SF6* gaasiga täidetud kambrisse, mis takistab lühise korral leegi ja lühise levikut ning kaitseb kõrval asuvaid fiidreid kahjustuste eest. Neljandaks on jaotusseade varustatud kergete ja lihtsate lülitamismehhanismiga. See on eriti oluline pingetes olukordades kui on vaja teha lülitamisoperatsioone. Viimaseks on tootja poolt on kinnitatud pikk eluiga seadmele ja hooldusvabad lülitid, mis tagavad seadme töökindluse ja usaldusväärsuse.

Lisaks eeltoodule tuleb mainida, et standardtoodet ei saa kasutada antud objektil, sest on soovitud väga paljude fiidritega lahendust ja moodulitest kokkupandav jaotusseade sobib sellele objektile kõige paremini. Moodulite paigutamisel ja valimisel saab mõõtusid mugavalt muuta, et kõik vajalikud lahtrid mahuksid ühte ruumi ära ehk on võimalik kasutada ruumi efektiivselt. Kokkuvõtteks võib öelda, et SEL TPR6 jaotusseade on kaasaegne ja paindlik lahendus, mis vastab nõudmistele ja vajadustele.

2. NORMID

Projekti koostamisel on võetud aluseks: kliendi hanke dokumendid, normdokumendid, Eestis kehtivad seadused sealhulgas "Ehitusseadus" ja "Seadme ohutusseadus" ning neist tulenevad ministri määrused ning standardid. Projekti käigus on järgitud kõiki Eesti Vabariigis kehtivaid õigusakte ja muid normdokumente, mis on vajalikud elektripaigaldiste projekti koostamisel. Tööd teostati vastavalt Eesti Vabariigis kehtivate normatiividele ja seadustele ning peeti kinni töötervishoiu, tuleohutuse-, tööohutuse- ja elektriohutusenõuetest.

2.1. Objekti erinõuded

Paigaldatavad elektriseadmed peavad vastama Euroopa Liidu madalpingeseadmete ja elektromagnetilise ühildatavuse direktiivide 2004/108/EP ja 2006/95/EÜ alusel kehtestatud tootestandardite ning omama CE vastavusemärki, lähtudes "Toote nõuetele vastavuse tõendamise seaduses" toodud nõuetele. Paigaldustöid teostav ettevõtja peab olema kvalifitseeritud, omama vastavate tööde tegemiseks pädevustunnistust ning kasutama oskustööjõudu ning omama vastavate tööde tegemiseks vajalikku majandustegevuse registreeringut. Muudatused, mida töövõtja ehituse käigus teeb, tuleb kooskõlastada tellija ja projekteerijaga. Kui töövõtja asendab elektriseadmeid teisetüübilisega nii, et see tingib projekti muudatuste sisseviimist, siis kannab sellega seonduvad kulud töövõtja. Mittestandardseid ja normdokumentidele mittevastavaid paigalduskomponente, installatsioonimaterjale, kilbitarvikuid ja teisi elektriseadmeid ei ole lubatud elektripaigaldises paigaldada ega kasutada. Töövõtja on kohustatud mõõdistuste käigus kontrollima kõikide kaitserakendustagatist. Vajaduse korral tuleb kaitseautomaat asendada selliselt, et oleks tagatud kaitserakendusnõue. Enne kasutuselevõttu on töövõtja kohustatud esitama visuaalse kontrolli deklaratsiooni.

2.2. Normide kirjeldus

Projekteerimisel on kasutatud Ehitusseadustiku ning Seadme ohutuseseadust. Ehitusseadustik reguleerib ehitustegevust. Ehitusseadustik sisaldab nõudeid ja tingimusi projektide koostamiseks,

ehitamiseks, renoveerimiseks ja lammutamiseks. Seadme ohutusseadustik reguleerib seadmete ohutust ning turule toomist ja kasutamist Euroopa Liidus.

Elektriohutusel on kasutatud standardeid:

- EVS-EN 61936 Tugevvoolupaigaldised nimivahelduvpingega üle 1 kV;
- EVS-IEC 60364 Ehitiste elektripaigaldised;
- EVS-EN 50110-1:2013 Elektripaigaldiste käit;
- EVS-EN 61140:2016/AC2017 Kaitse elektrilöögi eest ja ühisnõuded paigaldistele ja seadmetele;
- EVS-EN 60529 Ümbristega tagatavad kaitseastmed;
- EVS-EN 50522:2010 Üle 1 kV nimivahelduvpingega tugevvoolupaigaldiste maandamine.

2.2.1. Tehniline lahendus

Tööd teostatakse kahes etapis, töötada saab korraga ühes sektsioonis. Esimese etappi eelduseks on, et 6 kV jaotusseadme mõlemad sektsioonid on testitud ja seadmete FAT on läbitud edukalt. Esimeses etapis vahetatakse välja 6 kV jaotusseade esimene sektsioon, 0,4 kV esimese sektsiooni jaotusseade, esimene trafo ja paigaldatakse RTU ja seadmete toite kilbid uue jaotusseadme tarbeks. Teises etapis vahetatakse välja 6 kV jaotusseadme teine sektsioon ja teine trafo. Enne uue 6 kV jaotusseadme paigaldamist on tarvis olemasolevat ruumi laiendada, et olemasolev 6 kV jaotusseadme teine sektsioon ja olemasolevad toite ja automaatika ahelad saaksid töösse jääda.

2.2.2. 6 kV jaotusseade

Jaotusseade võib olla kas õhk või *SF6* isolatsiooniga, võimsuslüliti vaakumisolatsiooniga. Jaotusseadme pingetrafod asuvad eraldi lahtris.

Seadme üldised näitajad:

- nimipinge 24 kV;
- nimivool 1250 A;
- talitluspinge 6 kV;
- nimisagedus 50 Hz;
- üks sekund kestev lühisvool 20kA;
- juhtpinge 110 VDC;
- testimispinge 50 kV;
- impulsspinge testimisel 125 kV;

- maksimaalne lühise impulssvool 50 kA;
- asümmeetrilist lühisvoolu taluvust 16 kA üks sekund A-FLR;
- metallist elektrikapi tüüp teenuse katkemise kategooria kaks. Spetsiaalne elektrikapp tagamaks, et elektrivarustus ei katkeks, kui hooldus-, või remonditöid teostatakse või kui üks seade peaks riknema;
- maksimaalne ümbritsev keskkonna temperatuur on 55 °C;
- keskmine ööpäevane ümbritsev keskkonna temperatuur on 35 °C;
- minimaalne ümbritseva keskkonna temperatuur on 5 °C;
- suhteline õhuniiskus 95%;
- tase merepinnast vähem kui 1000 m;
- elektrilise osa kaitseaste IP 67;
- siseosa kaitseaste IP 3X;

Kaarekaitse on lubatud teostada nii selleks ette nähtud eraldiseisvate seadmetega kui ka fiidriterminalidega. Kaarekaitse anduritena kasutada optilisi andureid või rõhuandureid. Kaarekaitse peab hõlmama 6 kV lahtrite kaablikambreid. Kaarekaitse peab blokeerima releelülitusautomaatika. Kaarekaitse toimest välja lülitunud võimsuslüliti tagasilülitamine peab olema blokeeritud kuni kaarekaitse tagastamiseni kohapealt. Võimsuslüliti sisse lülitamise blokeering teostada sisse lülitamisahela katkestamisega ning blokeeringute vabastamine peab olema võimalik ainult jaotusseadmel kohapeal. Kaarekaitse süsteem peab kohalikult kuvama ja edastama läbi *RTU SCADA*-sse info lühise asukohast. Lahtrite voolutrafode tehnilised mõõtmised seotakse fiiderterminali voolusisenditega ja pingetrafo tehnilised mõõtmised seotakse sektsiooni põhiselt fiiderterminalide pingesisenditega. Väljuvate ja trafo fiidrite kaablivoolutrafode voolumõõtmised seotakse vastava lahtri fiiderterminaliga.

Jaotusseade peab olema jagatud kaheks sektsiooniks. See tähendab, et kaks sisendit 3000 kVA. Sektsioonid ühendatud sektsioonide vahelise lülitiga. Igas sektsioonis vähemalt nelja väljundlahtrit, millest üks peab olema reservis. Jaotusseade peab olema automatiseeritud. Sektsioonivahelise lüliti on vaikimisi lahti, ümberlülitamine peab rakenduma ühe toiteliini pinge kadumisel ja olukorra taastamine käib käsitsi. Sisendfiidrites peavad olema kommertsmõõtmiseks vajaminevad voolutrafod täpsusklassiga 0,2S ehk täpsusega $\pm 0,2\%$. Põhilised parameetrid peavad olema jälgitavad arvutivõrgust.

Jaotusseadmes võib kasutada ainult kas ABB või Schneider fiidriterminali.

2.2.3. RTU ja side

Jaotla alajaama sisemise ja välise side tarbeks paigaldatakse *RTU* ja side paneel. *RTU*-ga seotakse alajaamas 6 kV jaotusseadme fiiderterminalid, alalisvoolukeskus, 0,4 kV jaotusseade ja alajaama väline sideühendus. Ühendused kappide vahel teostatakse optikaga, sideahelad võivad olla kapi siseselt teostatud vaskkaablitega. Kappide vaheliste ühenduste korral kasutada topelt isolatsiooniga valguskaableid. *RTU* väline sideühendus luuakse optika baasil. Andmesideprotokoll *RTU* ja *SCADA* vahel on *ModBus TCP* ning fiiderterminalide ja *RTU* vahel IEC-61850.

2.2.4. Alalisvoolukeskus

Rekonstrueeritava alajaama side-, automaatika-, juhtimis-, kaitse- ja signaaliahelaid ja seadmeid toidetakse 110 VDC alalisvoolukeskusest. Alalisvoolukeskuse kontroller seotakse alajaama kaughalduse süsteemiga, alalisvoolukeskuse rikkesignaalid seotakse *RTU*-ga. Alalisvoolukeskuse akude mahtuvus täpsustada tööprojekti käigus ning laadimisvõimsus peab olema tagatud ka ühe laadija rikke korral.

2.2.5. Trafod

Olemasolevad trafod vahetatakse välja 3200 kVA kuivtrafode vastu. Trafod peavad võimaldama tulevikus töötada 10 kV pingel seadme vahetamiseta.

Trafo andmed:

- nimipinge 6,3 (10,5 kV on perspektiiv) / 0,41 kV;
- võimsus 3200 kVA;
- nimisagedus 50 Hz.

Trafode ja elektriseadmete tehnoloogilised ahelad siduda vastava lahtri fiidriterminalidega. Kõik tehnoloogiliste kaitsete ahelad tuleb juhtmestada eraldi ahelatena seadmekappideni. Nende kokku viimine traforuumis või seadme peal ei ole lubatud. Trafod peavad olema varustatud temperatuurikontrolli releega.

2.2.6. Madalpinge jaotusseade

Olemasolev madalpinge jaotusseade vahetatakse välja. Projekteeritav jaotusseade tuleb varustada releelülitusautomaatikaga ja kaarekaitsesüsteemiga. Madalpingejaotusseadmesse on ette nähtud tehniliste mõõtmiste jaoks multimeetrid.

Tehnilised näitajad:

- nimivool 5000 A;
- nimipinge 1000 V;
- kaitseaste IP55;
- juhistik 3*L*+*N*+*PE*, faaside ja neutraali ristlõiked on samad;
- latistus vask

Madalpingejaotusseade saab toite esimeselt ja teiselt trafodelt. Madalpingejaotusseadme ja trafode ühendused teostatakse latiliiniga.

2.2.7. Maandamine

Elektripaigaldiste ohutu ja efektiivne maandamine nõuab korrektset maandamist, mis on ka üks olulisemaid elektriohutuse tagamise põhimõtteid. Jaotla seadmete, kaabliteede ja metalltarindite maandamine tähendab nende elektrilist ühendamist olemasoleva hoone maanduskontuuriga. Maanduskontuur on süsteem, mis koosneb maandusjuhtmetest, maandusvarrastest ja muudest komponentidest, mis on ühenduses maapinnaga. Vajadusel tuleb olemasolevat maanduskontuuri täiendada, et tagada piisav maandustakistus ja maandusvoolu juhtimine. Täiendamine võib olla näiteks maandusühenduste parandamine, maandusjuhtmete pikendamine ja maandusvarraste paigaldamine.

2.2.8. Kaabliteed

Kaabliteed on elektrikaablite paigaldamiseks ette nähtud rajatised, mis kaitsevad kaablit ja tekitavad võimaluse kuhu kaablit kinnitada. Keskpinge ja madalpinge jõukaablite trassid asuvad olemasolevas kaablikeldris. Vajadusel tuleb olemasolevaid kaableid pikendada või asendada. Toite-, signaali-, juhtimis- ja optikakaablid paigaldatakse jaotusseadme kohale kaabliredelitele. Kaabliredel on metallkonstruktsioon, mis kaitseb kaableid ja tekitab võimaluse kaablid korrapäraselt kinnitada. Häirete vähendamiseks tuleb signaal ja juhtimiskaablid paigaldata tugevvoolu kaablitest eraldi või piisavalt kaugele, et oleks tagatud häiringuvaba toime.

2.2.9. Sekundaarkaabeldus

Sekundaarkaabeldus hõlmab signaal-, mõõte- ja juhtahelate kaabeldust. Sekundaarahelates kasutatakse *MCMK* ja *MCMO* tüüpi kaableid, mis on spetsiaalselt ette nähtud juhtimis-, signaaliahelatele.. Pinge- ja vooluahelates minimaalne ristlõike 2,5 ruutmillimeetrit. Selline ristlõige tagab piisava voolu juhtivuse ja kaabel ei soojene. Sekundaar seadmete toited *MCMK*-tüüpi kaabliga ristlõige valitakse kaitselüliti nominaalide järgi. Signaaliahelate puhul maandatakse kaablivarje ainult toitepoolsest otsast. Varje tähistatakse kaabli tunnusega. Reservsooned tähistatakse seadmetes selliselt, et oleks arusaadavalt tähistatud ja lihtsasti tulevikus leitavad ja kasutatavad.

2.2.10. Üldehitus

Jaotusseadmete ruum suurendada traforuumi arvelt. Traforuumis täita õlikogumismahuti killustiku või liivaga, valada korrektne põrand. Kogu ruum on vaja hiljem viimistleda. Jaotusseadmete ruumides asendada valgustus kaasaegse *LED* valgustuse vastu, asendada pistikud ning elektriradiaatorid. Uus traforuum lammutada olemasoleva abiruumi arvelt, ehitada uus traforuum, arvestada nõuetega, paigaldada vastav valgustus ja sundventilatsioon. Ventilatsiooni projekteerimisel arvestada tolmuga ning kasutada filtreid.

2.2.11. Üldine

Seadmete sildid graveerida ja kinnitada neetidega väljaarvatud karbikutel paiknevate seadmete sildid. Sildid kooskõlastada tööprojekti käigus. Töövõtja tarnib koos teostusjoonistega süsteemidele ja seadmetele vastavad hooldusjuhised ning need peavad hõlmama kõiki tarnitud süsteeme.

Tuleb anda vähemalt järgmised andmed:

- tehnilise andmed;
- valmistaja nimi;
- esindaja nimi;
- kasutusjuhend;
- reguleerimis- ja seadearvud;
- sisemised ühendusjoonised;
- hooldusjuhised.

Ekspluatatsiooni- ja valmisjooniste kopeerimis- ja tarnimiskulud kuuluvad töövõtu hulka. Kasutusja hooldusjuhendid antakse Tellijale üle paberkandjal A4 formaati köidetuna neljas eksemplaris ja digitaalsel andmekandjal.

Releekaitse testimisel peab kasutama automaatraportite salvestusega releekaitse testseadet näiteks *Omicron* või *Sverker*, mis võimaldab kinnitada testimise õigsust ilma raportite hilisema käsitsi muutmise võimaluseta.

3. SEADMETE VALIK

Seadme valik on üks olulisemaid otsuseid elektripaigaldiste projekteerimisel ja ehitamisel. Valitud seade peab vastama nõuetele, tagama töökindluse, ohutuse ja lisaks sobima keskkonnatingimustega.

3.1. Võrgulüliti Siemens Ruggedcom RSG2100

Käesolevas lõigus kirjeldatakse seadet *Ruggedcom RSG2100*, mida on kujutatud fotol (Foto 3) ning tuuakse välja selle seadme peamised eelised ja omadused.

Foto 3. Ruggedcom RSG2100

Ruggedcom RSG2100 on tööstuslik võrgulüliti, mis on mõeldud kasutamiseks karmides tingimustes. See seade sai valitud eelkõige seadme töökindluse ja vastupidavuse tõttu. Antud keskkonnas võib tekkida elektromagnetilisi häireid ja tugevaid elektrilaineid pluss muutliku keskkonna tõttu on just see seade väga hea valik. Seadmel on 19 modulaarset ühenduskohta sissetulevatele seadmetele, mis võimaldab paindliku konfiguratsiooni loomist. Seadet on võimalik tellida tehasest enda soovide järgi, näiteks kui palju soovitakse *RJ45* ühendust ning kui palju optilist ühendust.

Peamiseks eeliseks sellel seadmel on temperatuuri taluvus ilma lisa jahutussüsteemita. Seade talub -40 °C kuni +85 °C ainult enda passiivse jahutusega ning see on oluline eelis kohas kus keskkond on väga muutlik. Lisaks on võimalus ühendada kaks mitte sõltuvat toidet seadmele, mis vähendab seadmel toite kadumise riski ja suurendab töökindlust. *Ruggedcom RSG2100* vastab kehtivatele tööstusstandarditele ja normidele ning on sobilik kasutamiseks *SCADA* süsteemides. *SCADA* (*Supervisory Control and Data System*) on juhtimis- ja visualiseerimissüsteem, mis võimaldab koguda, jälgida ja analüüsida seadmete poolt edastatud infot ning lisaks reaalajas juhtida. [6] ja [1]

3.2. Schneider Saitel DR HUe ja Saitel DR ab DIDO

3.2.1. Saitel DR HUe

Saitel DR HUe on RTU ehk remote terminal unit ehk kaugjuhtimisterminali üksus, mis on fotol (Foto 4) vasakpoolne seade nimega "A1_1". See seade täidab olulist rolli elektripaigaldiste juhtimises ja monitoorimises. *RTU* on oluline vahepealne seade, mis suhtleb nii endast madalamal tasemel seadmetega näiteks fiidriterminalid ja multimeetrid kui ka kõrgemal tasemel olevate seadmetega ehk *SCADA* süsteemiga. *RTU* on võimeline võtma vastu *SCADA* käsklusi ja edastama need edasi seadmetele. *Saitel DR HUe* on modulaarne seade ehk peamoodulile saab juurde lisada mitu erinevat lisa moodulit. Näiteks on võimalik juurde lisada *ab DIDO* moodul, mis tähendab pikemalt *digital input digital output* ehk digitaalsisendid ja digitaalväljundid või *DO* moodul, mis on *digital output* ehk digitaalväljundid. Moodulite valik on suur ning neid saab kombineerida vastavalt vajadusele. Selles projektis on kasutusel *Saitel DR HUe* peamoodul ning lisatud juurde *ab DIDO* lisamoodul. Peamoodulil on ainult neli sisendsignaali ja null väljundsignaali. Peamoodulil on kolm *RJ45* ühendust, mille kaudu käib peamine suhtlus *SCADA* süsteemiga ja väliste seadmetega nagu näiteks võrgulülitiga ja fiidriterminalidega. *RJ45* ühendused on konfigureeritavad vastavalt soovile. Seadme konfigureerimine ja muudatuste tegemine on võimalik *Schneider Electricu* tarkvara *Easergy Builder 1.7.18* abil.

Foto 4. Saitel HUe ja Saitel ab DIDO

Saitel DR HUe-s toetab erinevaid protokolle nagu näiteks IEC 61850, ModBus TCP, ModBus, IEC 101, IEC 103, IEC 104 DNP, SOE, EOL ja ISaGRAF. See tagab ühilduvuse erinevate seadmetega, mis annab võimaluse seadet integreerida erinevatesse süsteemidesse. Saitel DR HUe eeliseks on pidevalt uuenev tarkvara kui ka konfigureerimiseks kasutatava programmi arendamine. Peamoodul on võimeline suhtlema mitmete protokollidega ning on töökindel. Peamoodul on lihtsasti seadistatav ja jälgitav nii SCADA süsteemis kui ka kohalikult veebiliidesest. RTU on loodud töötama temperatuuri vahemikus -40 °C kuni +70 °C tagades hea täpsuse nii signaalidel kui ka mõõtmistel. Õhu suhtelise niiskuse taluvus on kuni 95%, mis võimaldab seadet kasutada niisketes oludes. Peamooduli on ka sisse ehitatud aku, mis tagab kuni 8 tundi töötamist. Lisaks sellele on moodul ise väikese energia vajadusega ehk maksimaalselt tarbib 5W. Seadmel olemas CE-markeering ning on teostatud palju tootjapoolseid testimisi ekstreemsetes olukordades. [7]

Kokkuvõttes on *Saitel DR HUe RTU* oluline jaotusseadme juhtimises ja monitoorimises. Selle modulaarne ülesehitus, töökindlus ja vastupidavus karmidele keskkonnatingimustele muudab selle sobivaks valikuks erinevate elektripaigaldiste jaoks. *Saitel DR HUe RTU* võimaldab tagada elektripaigaldise efektiivse ja ohutu töö, pakkudes samal ajal kaasaegseid lahendusi ja funktsionaalsust.

3.2.2. Saitel DR ab DIDO

Saitel DR ab DIDO on üks vähestest lisamoodulitest, mis on kujutatud fotol (Foto 4) nimega "A1_2". Selle mooduli peamine eesmärk on suurendada peamooduli sisend- ja väljundsignaalide arvu. Sellel moodulil on 16 eraldatud sisendsignaali ja väljundsignaale on kaheksa, mis on paaridena. Lisamooduli ühendamiseks on vaja lisatoidet moodulile ning nende vahelist kaablit ja lõppu tuleb paigaldada väike osis, mis annab teada, et rohkem mooduleid ei ole juurde lisatud. Mooduli peal on indikatsiooniks tulukesed iga sisendi ja väljundi kohta. Lisaks saab moodulit jälgida ja uuendada ka veebiliidese kaudu ning see on konfigureeritav *Easergy Builder 1.7.18* programmi kaudu.

3.3. Terminalid P3U ja P3F

Schneider Electrucul on mitmeid erinevaid tüüpi P3U ja P3F fiidriterminale. Fiidriterminali pikk nimi määrab, mis funktsioonid on terminalidel ning millise protokolliga terminal suhtleb.

3.3.1. Schneider P3U30

Schneider P3U30-5BAA2BDAA kaitseterminal on Schneider Electricu universaalne kaitse- ja juhtimisseade (Foto 5). Seade sobib nii sisenditele, väljunditele kui ka mootoriga fiidritele. Seadet iseloomustab paindlikkus, mitmekülgsus ja töökindlus. Seadme toiteallikaks sobib lai vahemik 48 V kuni 230 V nii vahelduvvool kui ka alalisvool. Suhtlusprotokolle toetab IEC61850, *Modbus TCP*, *Ethernet IP* ja *DNP3 TCP*. Seade toetab mitmeid suhtlemisprotokolle kuid antud töös kasutan ainult IEC61850 protokolli, mis on laialdaselt kasutus alajaamade automaatikas. Kui ühel jaotusseadmel on mitu terminali siis saab ka terminalide vahel lubada ringliiklust ehk *RSTP*, kui peaks kuskilt üks ühendus katkema on terminalid võimelised ennast ümber suunama ilma, et side katkeks. Terminalil on 16 digitaalset sisendit ja 8 digitaalset väljundit, mis on selle objekti jaoks täiesti piisav. [8]

Foto 5. Fiidriterminal P3U30

Terminali kaitsefunktsioonide hulka kuuluvad mitmed olulised kaitsed, mille eesmärk on tagada ohutu ja efektiivne töö [8]:

- faasi liigvool;
- suunatud faasi liigvool;
- maandusrikke ülevool;
- suunatud maandusrikke ülevool;
- mööduv maarike;
- katkine juht;
- külmkäivituse ignoreerimine;
- lühisele lülitamise kaitse;
- kaitselüliti töö ebaõnnestumine;
- suunatud aktiivenergia liigne vähesus;
- rikke kauguse mõõtmine;
- taassulgur;
- faaside alavool;
- ülepinge;
- alapinge;
- maarikke ülepinge.

Mõõtmisfunktsioone on sellel terminalil ka palju ning loetlen peamised mõõtmisfunktsioonid [8]:

- kolme faasi vool;
- faaside vaheline vool;
- faasi ja neutraali vaheline vool;
- pinge faaside vaheline;
- pinge faasi ja neutraali vaheline;
- rikke kauguse mõõtmise vool;
- sagedus;
- aktiiv ja reaktiiv energia;
- pinge ja voolu nurgad;
- rikke reaktants;
- võimsuslüliti kulumine.

Terminal talub temperatuuri vahemikku -40 °C kuni +65 °C ja õhuniiskust kuni 95% ehk see terminal on väga sobilik katlamaja keskkonda, mis on alati väga soe ruum. [8]

3.3.2. Schneider P3F30

Toote täpsem nimi on Schneider P3F30-CBGGI-DAFOA-BBAAA. See fiidriterminal ei ole universaalne vaid sobib ainult sisenditele. Terminal on üldjoontes sama, mis P3U fiidriterminal, kuid erineb sellepoolest, et on võimekam, kiirem, omab rohkem väljundeid ja toetab kaarekaitse andurite lisamist.

Foto 6. Fiidriterminal P3F30

Fotol (Foto 6) näitan, milline näeb välja fiidriterminal. Mõlemad fiidriterminalid vastavad normidele.

3.4. Multimeeter Integra 1630

Multimeeter on oluline seade elektripaigaldises, mille abil on võimalik mõõta erinevaid elektrilisi parameetreid. Antud töös kasutatud multimeetrit on kujutatud fotol (Foto 7). See seade on väga töökindel sellepoolest, et see on tehasest välja tulles juba eelseadistatud nii, et see hakkaks tööle erinevates keskkondades ja tingimustes.

Foto 7. Integra 1630

Lisaks on seadet mugav seadistada, sest seadistamisel ei ole vaja kasutada keerulisi seadistusprotsesse. Siiski on mõned seadistused, mis tuleb teha. Üheks on trafo ülekande määramine, et seade ei näitaks liiga suurt või väikest väärtust. Teiseks on *Modbus* kanali andmete määramine. Seade suhtleb läbi *Modbus* protokolli otse *RTU*-ga, mis võimaldab multimeetri mõõdetud andmed edastada SCADA süsteemi. Modbus kanali seadistamine on kanali aadressi, kiiruse, pariteedi ja muude parameetrite määramine. Oluline on, et *RTU*-s kui ka multimeetris on samad kanaliandmed ning andmete lugemine toimuks õigetest registritest. Kui seadistamine tehti korrektselt, töötavad seadmed koos sujuvalt. See võimaldab kiiret ja täpset andmevahetust, mis on väga oluline aspekt ohutuses ja efektiivses toimivuses. Lõpetuseks võib öelda, et multimeeter on oluline ja lahutamatu osa kaasaegsest elektripaigaldisest, mis aitab kaasa kvaliteedi tagamisel ja elektrivõrgu toimivusele.

4. SEADISTUS

Modbus on enamasti keerdpaaril töötav suhtlusprotokoll. Sideprotokoll põhineb ülem (*master*) ja alluv (*slave*) arhitektuuril, millest üks ülem teostab mitmete alluvate seadmetele päringuid. Ülemseade saadab käsu alluvseadmetele ning alluvseade protsessib käsku ja saadab vastuse. Tähtis on ka, et kõik sideseansid alustab ülemseade mitte alluvseade. [9]

Modbus protokoll võib töötada nii sariliidese (*RS-232, RS-485*) kui ka internetiaadressi võrgu kaudu. Internetiaadressi kaudu töötavat *modbusi* nimetatakse *modbus TCP*. See siis tähendab, et igale ülem ja alluvale seadmele on määratud unikaalne internetiaadress ning suhtlus käib läbi tavalise interneti kaabli. *Modbus TCP* võimaldab andmevahetust ka suuremate vahemaade tagant.

IEC 61850 kommunikatsiooniprotokoll on võrgupõhine ja tugineb internetiaadressi protokollile. Protokoll kasutab standardiseeritud andmestruktuure ja sõnumiformaate, et tagada süsteemide vaheline andmevahetus. Selle protokolli abil on võimalik luua võrku ühendatud seadmete haldussüsteeme, mis võimaldavad pidevat ja tõhusat monitoorimist ja juhtimist. IEC 61850 protokolli abil on võimalik luua suuri süsteeme, mis võimaldavad siis pidevalt jälgimist ja juhtimist. [10]

4.1. Võrgulüliti seadistamine

Siemens *Ruggedcom 2100* võrgulüliti seadistamine oli üks olulisemaid ja esimesi etappe. Ilma võrgulülitita ei ole süsteem tervik ning ei toimu andmete vahetamist. Esmalt tuli luua ühendus võrgulüliti ja arvuti vahel. Ühenduse loomiseks kasutati kahte spetsiaalset kaablit, üks konsoolikaabel (Foto 8) ja teine konverterkaabel (Foto 9). Konsoolikaabel ühendati võrgulüliti konsooli pesasse ja konverterkaabel konsoolikaabel teise otsaga ning arvutiga.

Foto 8. Kaabel ühendamiseks

Foto 9. Konverter kaabel

Category:					
Session	Basic options for your PuTTY session				
Logging Logging Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Colours Connection Pota Proxy SSH Serial Telnet Rlogin	Specify the destination you want to con Serial line COM1 Connection type: OSSH Serial Other: Load, save or delete a stored session Saved Sessions	Telnet V Load Save Delete			
About	Close window on exit Always Never Only on clean exit				

Foto 10. Putty (kuvatõmmis programmist)

Ühenduse loomiseks kasutati programmi *Putty* (Foto 10). Kui ühendus on loodud, saab läbi konsooli muuta kõiki seadeid ja teha uuendusi. Esimesena tegin uuenduse tarkvara versioonile 5.7.0 ja käivitus tarkvara versioonile 4.3.0. Järgmisena tuli seadistada turvalisuse pärast uued paroolid, et igaüks ei saaks ligi võrgulülitile. Ning tuli lubada *RSTP* sideskeemi järgi ja sünkroonimise internetiaadress, kus võrgulüliti saab kellaaega sünkroniseerida. Sideskeemi infot näeb fotol (Foto 11).

Foto 11. Sideskeem

Foto 12. Ühendused võrgulülitisse

Foto 13. RTU kapp

Pärast võrgulüliti seadistamist ja konfigureerimist tuli teostada füüsilised ühendused teiste seadmetega (Foto 12). Selleks veeti terminalide vahelised valguskaablid *RTU* kappi (Foto 13) ning ühendati vastavalt sideskeemile (Foto 11). Lisaks loodi ka *RTU* kapi sisesed ühendused *RTU* ja võrgulüliti vahel, et andmevahetus saaks toimida ka SCADA süsteemi vahel. Lõpetuseks võib öelda, et võrgulüliti seadistamine ja ühendamine oli oluline osa projekti teostamisel. Edukas seadistamine tagas süsteemi tervikliku toimimise. Tänu võrgulülitile on võimalik erinevatel seadmetel omavahel suhelda ning tagatud ka süsteemi turvalisus.

4.2. Terminalide seadistamine

Fiidriterminali seadistamine Masina 18 objektil oli oluline osa projekti teostamisest, sest standardlahendust ei olnud võimalik kasutada. Terminalide nullist seadistamine tähendas, et kõik seadistused tuli teha vastavalt objekti vajadusele. Seadistamisprotsessi kirjeldan sellises järjekorras nagu fiidriterminali programmis *Vampset* on need kategoriseeritud.

4.2.1. Üldine

Kõige esimene muutmine on konfiguratsioonile nime ja asukoha andmine, et tulevikus ei tekiks probleeme ega peaks mõistatama, mille konfiguratsioon millisele lahtrile kuulub. *Vampset* programmis (Foto 14) on jaotatud seadistamine üheksasse kategooriasse ja iga peamine kategooria veel omakorda alakategooriateks.

📮 Masina18 L12 30.01.23 - Vampset					
File Edit View Settings Communication Device Library Disturbance Record Help					
	2 <u>L L L L</u>	()()→ ();;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			>
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS INPU	TS/OUTPUTS PROTECTION	MATRIX LO	as Communica	TION DEVICE/TEST	DOCUMENTATION
System info Scaling Mimic Local panel conf	System info	***			
Disturbance recorder System clock	Main location		asina 18		
Clock synchronizing	Sublocation				
	Name for this device		Schneider Fleetric		
			cinicider Electric		
	Device name		Protection relay		
	Device type		P3U30		
	Enable language for PC				
	Application mode		Feeder		
	Date	3	.01.2023		
	Time of day		15:17:46		
	Language		English		
	3				

Foto 14. Vampset (kuvatõmmis programmist)

Üks kõige olulisemaid muudatusi tehakse skaleerimise (*scaling*) kategoorias (Lisa 1), kus määratakse voolutrafode, pingetrafode ja summaarvoolutrafo piirkonnad. Nende piirkondade järgi hakkab fiidriterminal tegema arvutusi ja mõõtmisi. Määrata tuleb ka pinge mõõtmise algoritm. Antud projektis on kolm faasi pluss neutraal ning summaarvoolutrafo ehk tuleb valida arvutamispõhimõte 3LN + U0. Ehk kui primaarahelas on 400 A siis sekundaarahelas fiidriterminali jõuab üks amper ja

sama kehtib ka pingele ehk kui primaarahelas on 6600 V siis sekundaarahel fiidriterminali jõuab 110 V.

Järgmine etapp on miimika (*mimic*) loomine ehk mida kaitserelee ekraanile kuvab. Fiidriterminali ekraanil ei ole palju ruumi info kuvamiseks ning on valitud kõige tähtsam info (Lisa 2), mida läheb vaja kohapeal vaatamiseks. Antud lahtris kuvatakse võimsuslüliti, lahklüliti ja maanduslüliti asendeid, mis on nummerdatud. Number üks on võimsuslüliti, number kaks on lahklüliti ja number kolm on maanduslüliti. Paremal pool ääres kuvatakse iga faasi voole, liinipinget, reaktiivvõimsust ja aktiivvõimsust. Paremal üleval kuvatakse, kas fiidriterminal on kaugjuhtimisel või kohalikul juhtimisel. R tähendab *remote* ehk kaugjuhtimisel ja L tähendab *local* ehk kohalikul juhtimisel. Seda asendit saab kohapeal muuta, näiteks juhul kui soovitakse teatud lahtris teha tööd, et siis kellelgi ei oleks võimalik kaugelt fiidriterminali juhtida.

Fiidriterminalil saab vajaduse järgi muuta, mida ekraani menüüdes täpsemalt kuvatakse. Mõõtmiste vaatamiseks on mitu erinevat menüüd ning igale menüüle saab anda väärtusi, mida kuvatakse. Valitud just selliselt (Lisa 3), sest nii on kõik loogilises järjekorras ja kategoriseeritud. Lisaks saab muuta ka ekraani kontrasti ja kui kaua ekraanivalgustus töötab ning mis objekti ehk lülitit juhivad fiidriterminali peal olevad kaks nuppu. Need kaks nuppu on seadistatud alati võimsuslüliti juhtimiseks, sest võimsuslülitit peab olema võimalik igal võimalusel välja lülitada, kas siis *SCADA* operaatori juhtimisel, kohalikult jaotusseadme peal juhtimisnuppu vajutades, fiidriterminali peal nuppu vajutades või kaitse rakendumisel.

Oluline seadistamine on ka lühiste andmete salvestamine. Kõige üleval (Lisa 4) on kirjeldatud programmi versiooni ning mis väärtusi salvestatakse. Lühiste salvestamisprogramm on programmi sees olev programm. Salvestatakse kõik faasivoolud ja -pinged, maavoolu ja -pinge, millised sisendid ja väljundid olid sel hetkel aktiivsed ja mis kaitsed on rakendunud. Programmis salvestatakse kuusteist korda sekundis infot nende väärtustuste kohta, mis on ette andnud. Neid andmeid salvestatakse ainult siis kui tekkis lühis või mingi kaitse rakendus. Salvestatakse 2,5 sekundit, sellest 80% enne lühise toimumist ja 20% peale lühise toimumist. Sellist andme salvestamist saab salvestada ainult kaheksa korda, sest need on fiidriterminali jaoks väga mahukad ning neid saab hiljem analüüsida väga põhjalikult. Viimasena selles kategoorias antakse ette nii kellaaeg ja ajatsoon kui ka millal peab fiidriterminal oma kella kas edasi või tagasi kerima.

4.2.2. Mõõtmised

Mõõtmiste kategooria fiidriterminali seadistamise kategoorias on oluline osa, mis võimaldab kasutajal jälgida ja analüüsida elektrisüsteemi tööd reaalajas. Kuigi selles kategoorias ei ole võimalik teha konfiguratsiooni muudatusi, on see siiski väga väärtuslik kategooria. See pakub kasulikku teavet süsteemi hetkeseisundist, ajalooliste andmete ja mõõtmistulemuste kohta. Võimalik on vaadata (Lisa 5) voolu, energia, pinge hetke kui ka minimaalseid ja maksimaalseid väärtusi ning lisaks ka diagramme, kus on näidatud voolude ja pingete suunad ja nurgad.

4.2.3. Sisendid ja väljundid

Seadistamise käigus määratakse kindlaks sisendite (Lisa 6) ja väljundite (Lisa 8) nimetused, normaalolekud (Lisa 7), ajaviited, virtuaalsed väljundid (Lisa 8), tulukeste kirjeldused (Lisa 10) ning objektide (Lisa 11) tähendused. Nimetuse valimisel on oluline tagada nende selgus ja arusaadavus, et kõikidele kasutajatele oleksid need arusaadavad. Järgmisena tuleb määrata iga digitaalsisendi normaalolekud, see tähendab kas lüliti on normaalolekus avatud (*NO – normal open*) või normaalolekus suletud (*NC – normal close*) (Lisa 7). Lisaks on võimalik juurde lisada ka ajaviide teatud signaalidele, et vältida valehäireid. Näiteks võib ajam, mis vinnastab vedru, võtta aega umbes 10 sekundit. Nüüd kui on tekitatud 15-sekundiline viide signaalile, tekib signaal *SCADA* süsteemi alles siis kui ajam ei ole suuteline kiiremini kui 15 sekundiga vedru vinnastama või tekkis ajami viga.

Virtuaalsete väljundite (Lisa 9) abil saab tekitada juurde täiendavaid väljundeid, ilma füüsilise lisaseadme lisamiseta. Virtuaalseid väljundeid saab kasutada erinevate funktsioonide jaoks ning need võimaldavad lihtsat seadistamist. Kõiki virtuaalseid väljundeid saab saata SCADA süsteemi. Fiidriterminali esipaneelil asuvad tulukesed (Foto 5), mis näitavad süsteemi olekut. Iga tulukese kõrval on kirjeldus, mis kirjeldab tulukese tähendust. Kirjeldused luuakse programmis (Lisa 10) ja hiljem prinditakse need välja ja lõigatakse õigesse mõõtu ja paigaldatakse fiidriterminali külge. Viimasena määratakse kõikide objektide ehk elektrisüsteemi lülitite tähendused. Igale objektile (Lisa 11) määratakse, millised digitaalsisendid määravad objekti asendi ja mis number tähistab millist objekti. Need samad numbrid on seoses omavahel miimika koostamisel.

4.2.4. Kaitsed

Fiidriterminali kaitsete kategooria on üks olulisemaid aspekte, millel on otsene mõju elektrisüsteemi ohutusele ja töökindlusele. Kaitsefunktsioonide korrektne seadistamine on tähtis, kuna valesti

konfigureeritud kaitse võib põhjustada seadmete rikkeid, rahalisi kahjusid ning ohustada inimeste tervist ja elu. Seetõttu tuleb kaitsefunktsioonide seadistamisel lähtuda täpsetest arvutustest ja tehnilistest nõuetest.

📕 Masina18 L12 30.01.23 - Vampset			
File Edit View Settings Communication De	vice Library Disturbance Record Help		
	% 12421212 00→ >		
Protection relay P3U30			
TRAFO 2			
112			
Masina 18			
GENERAL MEASUREMENTS INPUT	S/UUTPUTS PRUTECTION MATRIX	LUGS COMMUNICA	TION DEVICE/TEST DUCUMENTATION
Fault locator 21FL	SetGrn common change	1	
Valid protection stages			
Protection stage status	seturp no control state	1	
Protection stage status 2 Programmable delay curves	SetGrp priority	1 to 4	
Cold load pick-up/inrush	Sector Sector		
Phase overcurrent I> 50/51	Current stages		
Phase overcurrent I>> 50/51	Enable for I>	2	
Phase overcurrent I>>> 50/51 Switch operconfault SOTE	Enable for b>		
Voltage-dependent o/c Iv> 51V	Enable for bas	1	
Dir. phase overcurrent Ip> 67		~	
Dir. phase overcurrent Ip>> 67	Enable for SUIF		
Dir. phase overcurrent Iq>>> 67	Enable for Iv>		
Directional nover P< 32	Enable for lo>		
Directional power P<< 32	Enable for Iq>>		
Phase undercurrent I< 37	Enable for Igo>>>	<u> </u>	
Broken conductor I2> 46BC	Enable for Imaxia		
Thermal overload T> 49F			
E/F overcurrent Io> 50N/5	Enable for (2>		
E/F overcurrent Io>>> 50N/5	Enable for I<		
E/F overcurrent Io>>>> 50N/5	Enable for If2>	~	
E/F overcurrent Io>>>> 50N/5	Enable for If5>		
Direct E/F overcurrent Lop> 67N			
Direct. E/F overcurrent Ioq>>> 67N	Earth fault stores		
Transient intermittent E/F 67NI	cartin-tault stages		
Overvoltage U> 59	Enable for lo>		
Overvoltage U>> 59	Enable for lo>>	✓	
Undervoltage U<	Enable for lo>>>		
Undervoltage U<< 27	Enable for lo>>>>		
Undervoltage U<<< 27	Enable for In22222	- I	
Negative seq. voltage U2> 47	Enable for least		
Negative seg. voltage U2>> 4/ Negative seg. voltage U2>>> 4/	Enable for loop>	<u> </u>	
Capacitor overvoltage Uc> 59C	Enable for loop>>		
Neutral vol. displacement Uo> 59N	Enable for loop>>>		
Neutral vol. displacement Uo>> 59N	Enable for loint>	1	
Neutral vol. displacement Uo>>> 59N	Enable for Uo>		
Over and under frequency fXX 81	Enable for IIo>>		
Under frequency f< 81U	Frankle for Waters		
Under frequency f<< 810	Enable for uo>>>		
ROCOF df/dt 81R			
Programmable stage Prg1 99 Programmable stage Prg2 99	Voltage stages		
Programmable stage Prg3 99	Enable for U>		
Programmable stage Prg4 99	Enable for U>>		
Programmable stage Prg5 99	Enable for II>>>		
Programmable stage Prg6 99 Programmable stage Prg7 99	Eaching for U.C.		
Programmable stage Prg8 99			
Breaker failure 50BF	Enable for U<<		
Breaker failure 1 50BF 💙	Enable for U<<<		
	Fnable for II2>		

Ready

Foto 15. Vampset kaitsed (kuvatõmmis programmist)

Kaitsefunktsioonide kategoorias (Foto 15) on näha erinevaid kaitsefunktsioone, millest vajalikud kaitsed on L12 fiidriterminalil aktiveeritud. Näiteks voolulõike kaitse aeglasem aste (Lisa 13) on üks selline kaitsefunktsioon, mille seadistamine nõuab täpsust ja hoolikust. Voolulõike kaitse rakendub teatud voolutaseme ületamisel, et kaitsta süsteemi ülekoormuse ja lühise eest. Kõik grupid on samaväärtuselised ohutuse pärast, juhul kui keegi peaks muutma gruppi, jääb kaitsefunktsioon

ikkagi samale režiimile tööle. Antud kaitse hakkab tööle 85 A juures ning fiidriterminal arvutab sätet selle järgi, mis on määratud voolutrafo ülekandeks. Hetkel on ülekanne 100 A ühele amprile ja nii tekibki 0,85 antud lisas. Kõvera tüübiks on valitud *IEC* ja *IEC* kõver on graafiline kujutis, mis näitab millise voolu juures millise ajaga kaitse rakendub. Kõvera tüüp on valitud *LTI* ehk *Long Time Inverse* ehk väga pika venivusega kõver, mis on ka antud sätete arvutuses. Sätteid tuleb kasutada just neid, mis on arvutatud. Kaitsefunktsioonide seadistamisel on oluline tagada omavaheline sobivus. Näiteks tuleb arvestada, et erinevate kaitsefunktsioonide väärtused ja reageerimisajad oleksid omavahel lahus, et tagada süsteemi terviklik kaitse. Lisaks tuleb kaitsefunktsioonide seadistamisel arvestada süsteemi eripärasid, nagu näiteks seadmete võimsust ja lubatud koormust.

4.2.5. Maatriks

Maatrikstabel (Lisa 14) on oluline tööriist fiidriterminali kaitsefunktsioonide ja signaalide seadistamisel, mis võimaldab visualiseerida ja konfigureerida signaalide teekondi ja juhtimisoperatsioone. Tabeli struktuur ja sisu on tehnilise iseloomuga ning eeldab süsteemi toimimise põhjalikku mõistmist.

Maatrikstabeli ülesehitus:

- vasakul veerus on loetletud kõik võimalikud signaalid ja kaitsefunktsioonid;
- ülemises reas on toodud kõik võimalikud sihtkohad, kuhu saab signaale suunata või mida saab juhtida. Sihtkohad võivad olla siis erinevad releed, salvestusseadmed ja indikaatorid;
- ristumiskohtadesse määratakse punktida, kui punkt on lihtsalt täpp on suunatud signaal edasi, aga kui punktil on veel väike ring ümber, tähendab see et kui toimub sealt signaali edastus jääb see signaal peale kui keegi vajutab tagastus nuppu.

Iga signaali teekond on põhjalikult läbi mõeldud ja proovitud. Juhul kui mingil signaalil jääb maatriksi tabelis teekond märkimata, siis üldjuhul ei tööta selle signaali funktsioon osaliselt või täielikult, sest maatrikstabel määrab, mida iga signaal tegema peab.

4.2.6. Logid

Terminalide alarmide ja sündmuste seadistamine võimaldas süsteemi töö käigus tuvastada erinevaid vigu. Selles etapis määrati, millised sündmused genereeritakse logi faili. Esimesena näidatakse logide kategooria all pikka logimisfaili (Lisa 15), kus on salvestatud kõik muutused, juhtimised, asendid, kaitsete tööd ja ükskõik mis seade muutmine fiidriterminalis kuvatakse sekundi täpsusega. See kõik
on vajalik selleks juhul kui midagi peaks juhtuma jaotusseadmes, on võimalik fiidriterminalide logisid läbi töötades leida põhjused, miks midagi juhtus. Teisena näidatakse 31 päeva ja 12 kuu (Lisa 16) maksimumväärtusi. See on kõik hea analüüsimiseks nii kliendile igapäevaselt kui ka seadistajale kui peaks juhtuma midagi problemaatilist jaotusseadmes. Näiteks klient saab soovi korral vaadata kuude kaupa tarbimist ning seda analüüsida. Alati kui testimine on lõpetatud tuleb see kõik ära nullida, sest peale testimist on seal väga suured arvud ja oleksid tulevikus eksitavad. Järgmistes alamkategooriates muudetakse, mida lisatakse logifaili (Lisa 17) ja üldjuhul saadetakse sinna võimalikult palju infot ja mõnel üksikul juhtumil eemaldatakse midagi, et tekiks vähem ebavajalikku sisu nagu näiteks ei saadeta logidesse asendite muutuse infot, sest kui fiidriterminalis midagi muutub, sisse või välja, siis see info kajastatakse juba logis. Absoluutselt igat signaali on võimalik muuta ja konfigureerida, kuidas ja kas seda kirjutatakse logidesse.

4.2.7. Kommunikatsioon

Järgnevalt seadistati terminalide kommunikatsiooniprotokollid, mis võimaldasid terminalidel suhelda teiste seadmetega süsteemis. Selles etapis määrati kasutatavad suhtlusprotokollid IEC 61850 ja *RSTP* (Lisa 18) ning nende parameetrid. Ringliikluse seadistamisel on tähtis prioriteedi suurus ning see peab olema suurem võrgulülitist. Lisaks määratakse millist infot fiidriterminal (Lisa 19) edastab *RTU*-sse. On võimalik saata igakord kõik signaalid, aga see ei ole mõistlik. Tuleb saata ainult vajalikud, mida reaalselt kasutatakse või mõned signaalid reservina juhul kui tulevikus soovitakse midagi juurde lisada. Näiteks kõige tavalisemad kaitsed jäetakse alati konfiguratsiooni, sest siis on tulevikus neid lihtne muuta kui soovitakse muudatusi. Juhul kui saadaksin kõik signaalid läheks *RTU* konfiguratsioon meeletult pikaks, mis omakorda koormaks *RTU*-d. Kui olen valinud kõik vajalikud signaalid, tuleb eraldi konfiguratsioonifail fiidriterminalist välja lugeda ja salvestada, mis laetakse hiljem *RTU*-sse. Selle failiga suudab *RTU* luua kõik vajalikud punktid enda konfiguratsiooni.

4.3. Terminalide testimine

Fiidriterminali kaitsmete testimine on oluline protsess, mille eesmärk on veenduda kaitsesüsteemi korrektses toimimises ja ohutuses. Testimine hõlmab mitmeid etappe, mille käigus kontrollitakse kaitsmete seadistusi, ühendusi ja tööd.

4.3.1. Omicron CMC 356

Omicron CMC 356 on võimsa funktsionaalsusega universaalne lahendus kõikide põlvkondade ja erinevat tüüpi kaitsereleede testimiseks (Foto 16). Sellel on võimsad kuus vooluallikat, kolmefaasiline režiim kuni 64 A ja 600 V iga kanali kohta, suur dünaamiline ulatus, mis võimaldab seadmel testida isegi suure koormusega elektromehaanilisi releesid, millel on väga suured võimsusnõuded. *Omicron CMC 356* on esimene valik rakenduste puhul, mis nõuavad kõrget mitmekülgsust, amplituudi ja võimsust. Peamiselt kasutatakse seda seadet elektriliste võrkude, kaitse, ja juhtimisseadmete ja muude elektriseadmete testimiseks ja kalibreerimiseks [11].

Foto 16. Omicron CMC 356

Omicron CMC 356 on mitu tarkvara, mida tootja pidevalt uuendab ja täiustab. Kasutati nendest ainult ühte programmi, *Test Universe 4.31* (Foto 17), mis on mõeldud sättepõhise releekaitsme testimiseks. Teine programm on *RelaySimTest*, mis on tarkvaralahendus süsteemipõhiseks kaitsete testimiseks sõltumata releetüübist ning pakub ulatuslikke parameetrite seadistusi. See keskendub kaitsesüsteemi õigele toimivusele, simuleerides realistlikke sündmusi elektrisüsteemis. Kolmas programm on *CMControl P*, mis on mõeldud kiireks ja manuaalseks testimiseks. Neljas programm on *EnerLyzer*, mis muudab *CMC* seadme multifunktsionaalseks mõõtmiste salvestamise ja jälgimise seadmeks. Ning viimane programm on *CMEngine*, mis suudab *CMC* seadme integreerida sinu enda testimiskeskkonda ja juhtida neid mis tahes tüüpi rakendustes [12].

4.3.2. Testimismoodul

Esimesena tuleb ette valmistada testimismoodul (Foto 17), kus vasakus tulbas on kategooriatesse jaotatud kõik kaitsed, mida testitakse. L12 fiidris testitakse näiteks voolulõike aeglasemat ja kiiremat astet, mis on pildil tähistatud I> ja I>>> ning lisaks maalühise kaitset I0>> ja suunatud maalühise kaitset I0 *dir> res. Dir* tähendab suunatud ja *res* tähendab takistuslik. Lisaks täidetakse ka protokolli esileht, kus kirjeldatakse kõikide seadmete seerianumbreid, seadmete nimesid ja vahemikke. Ainult esilehe põhjal peab olema võimalik tuvastada, mis seadmeid testiti, millal ja millises fiidris.

Foto 17. Test Universe esileht koos kaitsetega (kuvatõmmis programmist)

Skeemi põhjal tuleb vaadata kuhu kohtadesse ühendada pinge- ja vooluväljundid ning mis kohapealt saab võtta tagasiside. Need kõik tuleb märkida programmi, sest hiljem protokollis kuvatakse kogu info. Lisades (Lisa 20 ja Lisa 21) näidatakse, kuhu on pandud kirjeldus ning milliseid sisendeid ja väljundeid kasutatakse. Väljunditest kasutatakse (*Current Output* A) vooluväljundit A, mida näeb fotol (Foto 16) ja vooluväljund A on ühenduses ka selle kõrval oleva ümmarguse ühendusega. Binaarsisenditest kasutatakse ainult number ühte ja kahte. Number üks on alati kaitsme start ja number kaks on alati kaitsme rakendumine ehk kaitsme töö. Kaitsme andmete sisestamine algab nominaalväärtuste sisestamisega (Lisa 22) ehk millisel pingel töötab jaotusseade ja millisel vahemikul töötavad voolutransformaatorid. Liinipinge primaarahelas on 6,6 kV ja sekundaarahelas on pinge 110 V ning voolud primaarahelas 400 A ja sekundaarahelas 1 A. Selle põhjal oskab programm arvutada kaitsmekõveraid ja väärtusi. Järgmisena luuakse kaitsmekõverad ja antakse ette väärtused, mille põhjal programm kõvera joonestab. Fotol (Foto 18) näeb valemeid, mille põhjal programm kõvera joonestab. Fotol (Foto 18) näeb valemeid, mille põhjal programm kõvera joonestab. Fotol (Foto 18) näeb valemeid, mille põhjal programm ise suudab arvutada kõik vajalikud punktid. Voolulõike aeglasem aste on 0,9 korda 400 A

ehk 360 A ja kõvera tüüp on *IEC Extremely Inverse* ehk väga kiire langemisega kõver. Kõik vajalikud kaitsete andmed on antud sätete tabelis. Voolulõike kiirem kaste 8,1 korda 400 ehk 3240 A ja rakendumisaeg 0,03 sekundit. Selle kaitse kõver on *Definite Time* ehk sirge joon.

vercurrent Protection I	Parameters							
Relay Parameters Elements								
Selected element type:	Phase (2 Elements / 2 Active))	·					
Add Act	tive Element Name	Tripping Characterist	ic I Pick-up	Absolute	Time	Reset Ratio	Direction	
Сору То		IEC Extremely Inverse	0,900 Iref	900,0 mA	0,250	0,950	Non Directional	
Remove	1222	ice bennite nine	0,100 1101	0,100 A	30,00 ms	0,930	Non Directional	
Maurallin								
Move Down								
Define Element Characteristic	/iew Resulting Characteristic							
Characteristic		Range limits						
Name: IEC Extremely Inv	erse	Active			10000,00 -			
A*Td+ K1		I min: 0,000 Iref t	min: 0,0	0 s	1000.00 -			
$t(s) = \frac{M^{P} - 0}{M^{P} - 0}$	+ B * T d+ K 2	I max: +m Iref +	max:	0.6	500,00 -	1		
M = Itest/Ipickup		11100.	110.	~ 3	100.00 -	1		
Td = Time Index		Reset characteristic			50,00 -			-
A: 80.00 s B:	0.00 s	Off		t/s	10,00 - 5.00 -			_
D: 2000 0:	1,000			_	1.00			
P: 2,000 Q:	1,000	O Definite time to	: 1,00	Ds	0,50 -			_
K1: 0,00 s K2:	0,00 s	O Inverse time R	: 1,00) s	0.10 -			
					0.05 -			1
I pick-up: Tin	ne index:	$tr(s) = \frac{R * Td}{1 - MT}$	2,0	00	· ·	1.0 2.0	5.0 10.0	-
0,900 Iref	0,250	1 11					Iref	
						3	Save As User-defined	
						OK	Cancel	Help

Foto 18. Test Universe kaitsete määramine (kuvatõmmis programmist)

Kui kaitsete andmed on sisestatud, tuleb siseneda testimismoodulisse ning seadistada testimispunktid (Foto 19). L12 fiidri näitel voolulõike aeglasema aste esimene punkt testimisel on 5% enne kaitsme rakendumist ja nii testitakse iga faasi vahel eraldi ja kõikide faaside vahel. Esimese punkti testimisel suunatakse sekundaarahelasse 855 mA ja see võrdub kaitserelees 342 A. Kaitsereleel kaitse hakkab lugema alates 400 A. Järgmine punkt on 10% peale kaitsme rakendumist, et veenduda, kas kaitse suudab rakenduda ka pikema ajaga. Teise punkti lühisvool sekundaaris on 1,080 A ja kaitserelees võrdub see 432A. Kolmas punkt on sätete tabelis antud kontrollpunkt, mis peab rakenduma 0,5 sekundiga ja viimane punkt on 10% enne kaitsme lõppu, et veenduda õige kaitsme rakendumises. See tähendab, et peab rakenduma aeglasem aste, mitte kiirem aste. Aeglasem aste rakendub umbes 0,4 sekundiga kuid kiirem aste rakendub juba 0,03 sekundiga.

Foto 19. Test Universe testimis punktid (kuvatõmmis programmist)

Voolulõike kiiremat astet testitakse kahe punktiga ja see on 5% peale kaitsme rakendumist ja 25% peale rakendumist. Esimeses punktis on lühisvool fiidriterminalis 3400 A ja teises punktis 5200 A. Voolulõike kiirem aste hakkab rakenduma 3240 A. Piisab kahest punktist, sest antud kõver on sirge ja igal aja hetkel on alati sama rakendumisaeg.

4.3.3. Ühendamine ja testimine

Järgnevalt kirjeldatakse fiidriterminali kaitsmete testimise protsessi. Ühendus luuakse *Omicron CMC* 356 ja fiidriterminali vahel ning veendutakse et side nende vahel on stabiilne (Foto 20).

Foto 20. Omicron CMC 356 ühendamine L12 fiidrisse

Järgnevalt ühendatakse skeemi põhjal pinge- ja vooluväljundid õigetesse kohtadesse (Foto 21). Vasakul pool X6 klemmireal on ühendatud pingeväljundid (Lisa 25) ja paremal pool X4 klemmireal on ühendatud vooluväljundid (Lisa 24). Oluline on klemmireal kõik mitte vajalikud ühendused lahti ühendada, et vältida pingete ja voolude suunamist ebavajalikesse kohtadesse.

Foto 21. Omicron CMC 356 ühendused L12 fiidris

Testimise käigus võetakse tagasiside reservreleedelt T5 ja T6 (Lisa 26). Reservreleedele suunatakse kaitsme startimis- ja töötamissignaale, mis võimaldavad jälgida ajalisi vahesid nende kahe sündmuste vahel. Fotol (Foto 21) on tagasiside võetud punase ja musta juhtmega. Testimise käigus tuleb kontrollida lisaks ka summavoolutransformaatorite õiget ühendust ja toimivust (Lisa 27). See etapp on oluline kaitsme töö tagamisel ja vigade vältimisel. Testimisprotsessi käigus viiakse läbi kaitsmete funktsionaalsuse kontroll. Testimine toimub iga fiidri kaitsme jaoks eraldi, kuni kõik fiidri kaitsmed on kontrollitud (Foto 22 ja Foto 23). Testimise tulemused registreeritakse ja analüüsitakse ning veendutakse kaitse õigsuse;

Foto 22. Test Universe kaitse testitud

Foto 23. Test Universe testimine lõpetatud L12 fiidris

Juhul kui testimise käigus tuvastatakse vigu näiteks tekivad punased linnukesed roheliste linnukeste asemel, tuleb süveneda ja otsida probleemi allikas. Vea põhjus võib peituda konfiguratsioonis, testmooduli koostamisel, fiidriterminali juhtmestikus või jaotusseadme mehaanilises veas. Pärast vea

allika tuvastamist ja parandamist tuleb testid uuesti läbi viia, et veenduda süsteemi korrektses toimimises. Pärast kõigi kaitsmete edukat testimist ja vigade kõrvaldamist lõpetatakse testimisprotsess. Testimise tulemused dokumenteeritakse ja arhiveeritakse, et neid saaks kasutada süsteemi hoolduse, auditeerimise või arendamise käigus.

Testimise protsessi läbiviimisel on oluline olla tähelepanelik, et vältida vigu ja tagada süsteemi usaldusväärsus. Kokkuvõtvalt on fiidriterminali kaitsmete testimine tähtis protsess, mis aitab tagada elektrisüsteemi ohutuse ja töökindluse. Testimine võimaldab tuvastada ja kõrvaldada vigu ja parandada süsteemi toimivust. Korrektselt läbiviidud testimine aitab vältida rikkeid, õnnetusi ja kahjusid ning tagab elektrisüsteemi pikaajalise töö.

4.4. *RTU* seadistamine

RTU seadistamine on oluline etapp elektrijaotusvõrgu juhtimissüsteemi konfigureerimisel. Järgnevalt kirjeldatakse *RTU* seadistamise protsessi üksikasjalikumalt, kasutades programmi *Easergy Builder 1.7.18*: Seadistamise protsess hõlmab mitmeid samme, mille käigus määratakse seadme internetiaadressid, suunamised, lisamoodulid ning konfigureeritakse signaalide ja kommunikatsioonikanalite parameetrid.

Programmi avalehel luuakse põhilised andmed ehk internetiaadressid, suunamised ja millised lisamoodulid peamoodulile juurde tulevad. Järgmisena määratakse programmis millised signaalid on inverteeritud (Lisa 28) ja millised sisendid ning väljundid on topelt signaalid. Topelt signaalid on näiteks lüliti asendid ja nende juhtimised. Kõik teised signaalid on üksikud signaalid. Lisal (Lisa 28) on kõik üksikud signaalid (*DI_ISIM*) ja inverteeritud (*Invert*) kaks signaali, signaal 10 ja 11. Nende andmete põhjal genereerib programm andmebaasi punktid (Foto 24).

es Cha	onels coreDb	Synchroniza	tion														
1 1	*	Cynchroniad															
Com	nand Analog	Setnoint	dbNET														
Name		Source	~	AND	∨ De	tination	~	~2 SS	Error rows								
		Source1	Source1	Source1	Destination1	Destination1	Destination2	Destination2	Destination3	Destination3	Destination4	Destination4				Shared	Shared
Name	Description	Device	Coordinates	Vmask	Device	Coordinates	Device	Coordinates	Device	Coordinates	Device	Coordinates	init value	Blocked	Non volatile	Publish	Subscribe
ST00013	L07 Relay LO01	L07	[L07Relay/L001														
ST00014	L07 Relay LO02	L07	(L07Relay/L002														
ST00015	L07 Relay LO03	L07	[L07Relay/L003														
ST00016	L07 Relay L004	L07	[L07Relay/LO04														
ST00017	L07 Relay LO05	L07	[L07Relay/L005														
ST00018	L07 Relay LOD6	L07	(L07Relay/L006			_											
ST00019	L07 Relay LO07	L07	[L07Relay/L007														
ST00020	L07 Relay LOD8	L07	[L07Relay/L008														
ST00021	L07 Relay LO09	L07	[L07Relay/L009														
ST00022	L07 Relay LO10	L07	[L07Relay/LO10														
ST00023	L07 Relay LO11	L07	[L07Relay/L011														
ST00024	L07 Relay L012	L07	[L07Relay/L012														
ST00025	L07 Relay LO13	L07	[L07Relay/L013														
ST00026	L07 Relay L014	L07	(L07Relay/L014														
ST00027	L07 Relay L015	L07	[L07Relay/L015														
ST00028	L07 Relay LO16	L07	[L07Relay/L016														
ST00029	L07 Relay LO17	L07	[L07Relay/L017														
ST00030	L07 Relay LO18	L07	[L07Relay/LO18														
ST00031	L07 Relay LO19	L07	[L07Relay/L019														
ST00032	L07 Relay LO20	L07	[L07Relay/LO20														
ST00033	L07 Relay Obj1C	L07	[L07Relay/Obj1C														
ST00034	L07 Relay Obj1C.	L07	[L07Relay/Obj1C														
ST00035	L07 Relay Obj1C	L07	[L07Relay/Obj1C														
ST00036	L07 Relay Obj2C	L07	(L07Relay/Obj2C														
ST00037	L07 Relay Obj2C	L07	[L07Relay/Obj2C														
ST00038	L07 Relay Obj2C	L07	(L07Relay/Obj2C														
ST00039	L07 Relay Obj3C.	L07	[L07Relay/Obj3C														
ST00040	L07 Relay Obj3C	L07	[L07Relay/Obj3C														
ST00041	L07 Relay Obj3C	L07	[L07Relay/Obj3C														
ST00042	L07 Relay VisGG.	L07	[L07Relay/VisGG														
ST00042	107 0 10 10 000	1.07	E 07Dalau0.0a00														

Foto 24. Easergy Builder signaalid

Kui kõik vajalikud punktid on genereeritud, lisatakse esimesena kõik vajalik kategooriad (Foto 25). Lisamise järjekord ei ole oluline aga seekord lisati esimesena sündmused (*Events*), mis on eelnevalt valmis koostatud põhja järgi (*Template*) signaalide lõpu tähised (Foto 26) ja need genereeritakse asendi muutuse või juhtimise korral vahemälusse. Alati lisatakse juurde ka kategooriasse valemid (*Formula*), mille abil saab teatud signaalidele tekitada näiteks ajaviidet ja palju muud. *Formula* abil saab kasutada programmi sisse ehitatud valemeid ja funktsioone. Näiteks *Formula* abil saab RTU konfiguratsioonis tekitada signaalidele viiteid või mitu signaali omavahel kokku liita.

Foto 25. Easergy Builder esileht

Configuration Register Qualifier Device Events Events	Max. events logged 1000 (288 KB) Log file Events
Status	Identifier Dps Image: Constraint of the second se
Analog Ds List	~2 \

Foto 26. Easergy Builder sündmused

RTU suhtlemiseks fiidriterminalide ja multimeetritega luuakse *IEC61850*, *Modbus TCP* ja *Modbus* kanalid. Kanalite seadistamisel määratakse suhtluskiirus, seadmete aadressid ja muud parameetrid. Lisaks seadistatakse *SCADA* ühendus, mille abil edastatakse andmed *RTU*-st *SCADA* süsteemi.

RTU andmebaasis genereeritud signaalidele antakse loogilised nimed ja määratakse aadressid vastavalt signaalitabelile (Foto 27). Signaalitabel on eelnevalt koostatud ja kliendiga kooskõlastatud dokument, mis sisaldab kõiki süsteemi signaale ja nende aadresse. Kui kõikide fiidriterminalide konfiguratsioonifailid on laetud *RTU*-sse siis *RTU*-s on üle 1000 rea signaale, mis tuleb kõik läbi töötada (Lisa 28). Lisaks kasutatakse signaalitabelit ka SCADA süsteemis jaotusseadme pildi loomisel. Signaalide konfigureerimisel tuleb tähelepanu pöörata signaalide kirjeldustele, allikatele ja sihtkohtadele. Näiteks tuleb määrata, millisest seadmest signaali küsitakse, milliselt registri pealt seda loetakse ning millisele seadmele ja aadressile signaal edastatakse. Lisaks tuleb seadistada mõõtmistele (Lisa 29) vahemikud (*threshold*), et vältida *SCADA* süsteemi ülekoormamist liiga sagedase info saatmisega. Kui ei ole määratud (*threshold*) saadab *RTU* iga väiksemagi muutuse peale info *SCADA* süsteemi.

A	В	C	D	E	F	G	н	1	J	К	L	M	N	0
6.4 Väljuv filder L07-L14	Out L07 - L14													
Controls	Device	Signal name in English	Signal name in Estonian	Command 1	Command a	2 IEC61850	Signal type	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus
6.4.1 Juhtimised	Seade	Nimetus inglise keeles	Nimetus eesti keeles	Käsk 1	Käsk 2	IEC61850 aadress	Signaali tüüp	Modbus aadress	Modbus aadress	Modbus aadres	s Modbus aadres	Modbus aadres	Modbus aadres	Modbus aadress
								L07	L08	L09	L10	L11	L12	L13
	VL	Circuit breaker open / close	VL-i käsk	välja	sisse	[Relay/Obj1CSWI1\$CO\$Pos\$]D	C_DC_NA_1	6701	6801	6901	7001	7101	7201	7301
States	Device	Signal name in English	Signal name in Estonian	Value 1	Value 2	IEC61850	Signal type	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus
6.4.2 Asendi signaalid	Seade	Nimetus inglise keeles	Nimetus eesti keeles	Väärtus 1	Väärtus 2	IEC61850 aadress	Signaali tüüp	Modbus aadress	Modbus aadress	Modbus aadres	s Modbus aadress	Modbus aadres	Modbus aadres	Modbus aadress
								L07	L08	L09	L10	L11	L12	L13
0	VL + LL	Feeder in operational	Filder töös	väljas	sees	Relay VOsGGIO1 Ind1 stVal	M_DP_TB_1	6711	6811	6911	7011	7111	7211	7311
1	Relee	Local / remote	Fildri kaug/kohalik võti	kohalik	kaug	Relay LLN0 Loc stVal	M_SP_TB_1	6712	6812	6912	7012	7112	7212	7312
2														
Measurements	Device	Signal name in English	Signal name in Estonian	Scale	Unit	IEC61850	Signal type	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus
6.4.3 Mõõtmised	Seade	Nimetus inglise keeles	Nimetus eesti keeles	Skaala	Ühik	IEC61850 aadress	Signaali tüüp	Modbus aadress	Modbus aadress	Modbus aadres	s Modbus aadres	Modbus aadres	Modbus aadres	Modbus aadress
5								L07	L08	L09	L10	L11	L12	L13
5	Kaitserelee	Active power P	Aktiivvõimsus P		kW	Relay PQSpfMMXU18 TotW mag f	M_ME_NC_1	6721	6821	6921	7021	7121	7221	7321
r		Reactive power Q	Reaktiivvõimsus Q		kVar	Relay PQSpfMMXU18 TotVAr mag f	M ME NC 1	6723	6823	6923	7023	7123	7223	7323
3		Current I1	Vool L1		A	Relay SIpMMXU23 A phsA cVal mag	M_ME_NC_1	6725	6825	6925	7025	7125	7225	7325
		Current I2	Vool L2		A	Relay SIpMMXU23 A phsB cVal mag	M_ME_NC_1	6727	6827	6927	7027	7127	7227	7327
1		Current I3	Vool L3		A	Relay SIpMMXU23 A phsC cVal mag	M ME NC 1	6729	6829	6929	7029	7129	7229	7329
		Short circuit current	Lühisvool L1		A	Relay IFLTGGIO1 Anin1 mag f	M ME NC 1	6731	6831	6931	7031	7131	7231	7331
		Short circuit current	Lühisvool L2		A	Relay IFLTGGIO1 AnIn2 mag f	M_ME_NC_1	6733	6833	6933	7033	7133	7233	7333
8		Short circuit current	Lühisvool L3		A	Relay IFLTGGIO1 Anin3 mag f	M ME NC 1	6735	6835	6935	7035	7135	7235	7335
Alarms	Device	Signal name in English	Signal name in Estonian	Value 1	Value 2	IEC61850	Signal type	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus	Modbus
6.4.4 Alarmid	Seade	Nimetus inglise keeles	Nimetus eesti keeles	Väärtus 1	Väärtus 2	IEC61850 aadress	Signaali tüüp	Modbus aadress	Modbus aadress	Modbus aadres	s Modbus aadres:	Modbus aadres	Modbus aadres	Modbus aadress
1								L07	L08	L09	L10	L11	L12	L13
3	Terminal	Feeder fault	Fiidri rike	tagastus	tekkis	Relay VOsGGIO1 Ind2 stVal	M_SP_TB_1	6751	6851	6951	7051	7151	7251	7351
0		Protection trip	Kaitse töö	tagastus	tekkis	Relay VOsGGIO1 Ind3 stVal	M_SP_TB_1	6752	6852	6952	7052	7152	7252	7352
1		CB not ready	VL juhitamatu	tagastus	tekkis	DI14	M SP TB 1	6753	6853	6953	7053	7153	7253	7353
		SF6 fault	SF6 rike	tagastus	tekkis	Relay VOsGGIO1 Ind6 stVal	M SP TB 1	6754	6854	6954	7054	7154	7254	7354
2		Communication fault	Siderike	tagastus	tekkis	Relay VOsGGIO1 Ind4 stVal	M_SP_TB_1	6755	6855	6955	7055	7155	7255	7355
8		No Voltage	Kaabel pingetu	tagastus	tekkis	Relay VOsGGIO1 Ind5 stVal	M_SP_TB_1	6756	6856	6956	7056	7156	7256	7356
i l		Transformer protection alarm	Tehno. Kaitse alarm	tagastus	tekkis	DI15	M SP TB 1	6757	6857	6957	7057	7157	7257	7357
5		Transformer protection trip	Tehno. Kaitse töö	tagastus	tekkis	DI16	M SP TB 1	6758	6858	6958	7058	7158	7258	7358
5														
7														
Tasliska	103 103 1 103	101 105 105 107 11		2				1.01						

Foto 27. Signaalitabel

Kokkuvõttes on *RTU* seadistamine keerukas ja vastutusrikas protsess, mis nõuab täpsust, hoolikust ja süsteemset lähenemist. Õigesti seadistatud *RTU* tagab elektrijaotusvõrgu tõhusa ja usaldusväärse juhtimise, võimaldades reaalajas jälgida ja kontrollida võrgu tööd.

4.5. *RTU* testimine

RTU testimine tähendab täpsemalt kõikide signaalidest kontrollimist kuni *RTU*ni ja peale RTUsse testimist SCADA süsteemi. Signaalitabeli (Foto 27) põhjal peavad kõik signaalid jõudma RTUni ning RTU peab need edastama kohalikku SCADA süsteemi. Sellel objektil on 16 erinevat fiidrit siis igas lahtris tuleb tekitada signaal ning tuleb kontrollida selle jõudmist *RTU*sse. Esiteks tuleb kõik signaalid tekitada oma algkohast. Teiseks tuleb veenduda õige signaali jõudmist RTU süsteemi, see tähendab et igat signaali tuleb tekitada ükshaaval, et oleks võimalik signaale eristada. Üldjuhul viimasena kontrollitakse side toimivust. Kui igal terminalil on lubatud RSTP siis ühe pordi või ühe kaabli katkemisel ei tohi side ära katkeda. Kui kõik signaalid on testitud RTUni tuleb alustada testimist SCADA süsteemi. Testimise alustamiseks on vaja kokku leppida aeg, sest on vaja kahte inimest. Üks seadistaja tekitab signaale jaotusseadmes ja SCADA operaator jälgib signaalide tekkimist SCADA süsteemi. Kui on tekitatud kõik signaalid, proovib SCADA operaator kõiki juhtimisi kaugelt ning veendutakse, et õige lüliti muutis asendit. Viimasena tekitatakse igas lahtris kõik vajalikud mõõtmised SCADA süsteemi, see tähendab, et suunadakse Omicron CMC 356 seadmega sekundaarselt lahtritesse pingeid ja voole. Mõõtmiste SCADA süsteemi tekitamise eesmärk on veenduda, et SCADA operaator on kõik väärtused õigesti seadistanud ja nii seadistaja kui operaator näevad samu väärtuseid. Kokkuvõtteks kinnitatakse mõlema osapoole poolt andmeside toimivust ja RTU konfiguratsiooni lõpliku kinnitamist. See etapp lõppeb signaalitabeli mõlemapoolse digiallkirjastamisega.

4.6. Vead

Jaotusseadme montaaži ja konfiguratsiooni käigus ilmnesid probleemid nagu näiteks mõned montaaži, konfiguratsiooni ja tootjapoolsed vead. Allpool kirjeldatakse vigadest lähemalt ning analüüsitakse põhjuseid.

Kõige levinum viga oli juhtmestuse montaaži viga.. Põhiliselt tähendas see, et kas juhe oli valesse klemmi ühendatud (Foto 29) või ei olnud nõuete kohaselt ühendatud (Foto 28) või montaaži protsessi käigus juhet kahjustatud. Montaaži vigade põhjuseks oli sageli ajapuudus, mis omakorda oli tingitud tarneprobleemidest ja tarneaegade pikenemisest.

Foto 28. Juhe ühendamata kaitselülitisse

Foto 29. Juhe ei olnud nõuete kohaselt ühendatud

Testimise käigus ilmnesid lisaks ka kaitseseadmete konfiguratsiooni vead, mis olid seotud seadmete seadistamisega. Need vead said kõik jooksvalt testimise ja töö käigus tuvastatud ja likvideeritud. Kui tekkis viga, süveneti sellesse kohe ning alles peale lahendamist mindi testimisega edasi. Konfiguratsioonivigade suurimaks põhjuseks oli asjaolu, et kõik ettevalmistused pidi teostama

objektil kohapeal olles. Objektil seadistamise teevad keeruliseks pidev müra, ehitustööd, külm ja palav keskkond ning lisaks sülearvuti väike ekraan.

Lisaks eelnevalt kirjeldatud vigadele oli ka tootjapoolseid vigu. Peamiselt esines tootja poolt juhtmemontaaži vigu, vigased või puudulikud komponendid. Näiteks fotol (Foto 30) näidatakse kuidas mikrolüliti keel on transpordi või paigalduse käigus valesse olekusse läinud. Mikrolüliti keel peab olema noolega näidatud osa peal. Lisaks jäid tootja järel tarnesse kogumislati lahtri kaarekaitseandurid, mis sai objektil jooksvalt paigaldatud. Sellised vead tuli sammuti kohapeal tuvastada ja parandada. Kuna tootja tehas asub Itaalias siis kõik parandused on tehtud Eltech Solutions OÜ töötajate poolt.

Foto 30. Hoob vales kohas

Foto 31. Kaarekaitse andur

Foto 32. Värvikahjustus

Kui vigasid grupeerida, siis kõige rohkem oli montaaživigu, umbes üle poole, ja tavaliselt oleks neid kindlasti kolmandikku võrra vähem kui ei esineks seadmete ja komponentide tarnetest tulenevat

kiirustamist. Järgmine suurem grupp on konfiguratsioonivead, mis tulevad alles testimise käigus välja ja mida saab töö käigus ära parandada. Autori hinnangul 50 % vigadest ja puudustest olid seotud juhtmemontaažiga, 35 % konfiguratsiooni vead ja 15% keskpingejaotusseadmega. Lisaks väike protsent on ka transpordi ja paigalduse ajal tekkinud kahjustused, mida kõike oleks võimalik vältida kui ollakse hoolsamad ja etteavaatlikumad(Foto 32).

4.7. Protokollid

Kõik vajalikud protokollid koostavad *Test Universe* ja *Vampset* programmid. *Test Univers*e koostab sellised protokollid, mida ei ole lihtne võltsida. See tähendab, et kui testimisprotsess on lõpetatud, ei saa mitte ühtegi faili enam muuta ilma, et kustutaksid kõik tulemused ja alustaksid uuesti testimisega. Fotodel (Foto 33 ja Foto 34) on näidatud kaks lehekülge keskmiselt 15-leheküljelisest protokollist. Esilehel kuvame alati seadmete seerianumbreid, et oleks võimalik tuvastada millises fiidris testimine käis ja kas just nende seadmetega, mis lõpuks paigaldati. Leheküljel kujutatakse (Foto 34) graafiliselt, milline nägi kõver välja ja üleval kujutatakse tabelit, kus on kirjas kõik testimise ajad ning kas test sai läbitud või ei.

Releekaitse protokoll

 Objekt: Masina 18

 Fiider: L12

 Testseade: Omicron CMC356

 S/N: JH535S

 KP/MP seade: SEL TPR6 LLCCk

 S/N: RMU/22/1261

 Kaitserelee: Easegy P3U30-5BAA2BDAA

 S/N: EB223230012

 Voolutrafod: ELEQ SVA 200-400/1A

 L1: 20635696
 L2: 20635697

 Pingetrafod:

 L1:
 L2:

L3: 20635698

Märkused

Testija: E.Targamaa Kuupäev: 11.01.23

Foto 33. Releekaitse protokolli esileht

Shot Test Results:

Туре	Relative To	Factor	Magnitude	Angle	tnom	tact	Deviation	Overload	Result
L1-L2		950,0 m	855,0 mA	-30,00 *	No trip	No trip	n/a	No	Passed
L2-L3	Þ	950,0 m	855,0 mA	-30,00 *	No trip	No trip	n/a	No	Passed
L3-L1	Þ	950,0 m	855,0 mA	-30,00 *	No trip	No trip	n/a	No	Passed
L1-L2-L3	Þ	950,0 m	855,0 mA	-30,00 *	No trip	No trip	n/a	No	Passed
L1-L2		1,200	1,080 A	-30,00*	45,45 s	45,48 s	0,05050 %	No	Passed
L2-L3	▶	1,200	1,080 A	-30,00 *	45,45 s	45,52 s	0,1418 %	No	Passed
L3-L1	Þ	1,200	1,080 A	-30,00 *	45,45 s	45,54 s	0,1799 %	No	Passed
L1-L2-L3	I>	1,200	1,080 A	-30,00 *	45,45 s	45,47 s	0.02810 %	No	Passed
L1-L2		6,389	5,750 A	-30,00 *	502,3 ms	508,2 ms	1,177 %	No	Passed
L2-L3		6,389	5,750 A	-30,00 *	502,3 ms	505,9 ms	0,7194 %	No	Passed
L3-L1		6,389	5,750 A	-30,00 *	502,3 ms	504,4 ms	0,4207 %	No	Passed
L1-L2-L3		6,389	5,750 A	-30,00 *	502,3 ms	504,6 ms	0,4606 %	No	Passed
L1-L2	Þ	8,500	7,650 A	-30,00 *	280,7 ms	284,1 ms	1,211 %	No	Passed
L2-L3		8,500	7,650 A	-30,00 *	280,7 ms	287,9 ms	2,564 %	No	Passed
L3-L1		8,500	7,650 A	-30,00 *	280,7 ms	279,6 ms	-0,3925 %	No	Passed
L1-L2-L3	D	8,500	7,650 A	-30,00 *	280,7 ms	276,5 ms	-1,497 %	No	Passed
L1-L2	(boo	1,050	8,505 A	-60,00 *	30,00 ms	47,00 ms	56,67 %	No	Passed
L2-L3	[>>>	1,050	8,505 A	-60,00 *	30,00 ms	43,30 ms	44,33 %	No	Passed
L3-L1	(500)	1,050	8,505 A	-60,00 *	30,00 ms	39,80 ms	32,67 %	No	Passed
L1-L2-L3	[500	1,050	8,505 A	-60,00 *	30,00 ms	43,40 ms	44,67 %	No	Passed
L1-L2	(pop	1,500	12,15 A	-60,00 *	30,00 ms	24,80 ms	-17,33 %	No	Passed
L2-L3	(boo	1,500	12,15 A	-60,00 *	30,00 ms	21,60 ms	-28,00 %	No	Passed
L3-L1	(pop)	1,500	12,15 A	-60,00 *	30,00 ms	21,00 ms	-30,00 %	No	Passed
L1-L2-L3	(DDD)	1,500	12,15 A	-60,00 *	30,00 ms	15,70 ms	-47,67 %	No	Passed

Pick-up / Drop-off Test Results:

	a si si s	IP	ick-up	k-up I Drop-off		p I Drop-off Reset Ratio				Desut
Type	Angle	nom	act	act	nom	act	Error	Result		
L1-L2	-30,00 *	0,000 mA	0,90 A	872,9 mA	950,0 m	967,0 m	1,790 %	Passed		

Foto 34. Releekaitse protokolli osa

Minu jaoks tähtis protokoll on *Vampset*i programmiga koostatud voolu- ja pingesuunad ning nurkade protokoll (Foto 35). Selline kontroll tehakse siis, kui kõik teised testid on tehtud ning keegi ei tööta enam jaotusseadmega. See protokoll kinnitab, et ma olen kõik piirkonnad õigesti määranud ja kõik ahelad töötavad primaarahelast kuni fiiderterminali sekundaarühendusteni. Peale minu tööd tulevad muhvi ja kaablite ühendajad, ehk kui minu poolt oli kõik õigesti tehtud ning nende poolt ühendatakse valesti, aitab just see protokoll mind kaitsta probleemide eest. Viimane minu poolt tehtav protokoll on signaalitabeli allkirjastamine peale *SCADA* testimise lõppu ja see tõendab, et kõik signaalid on testitud algkohast kuni *SCADA* arvutini.

Feeder relay P3F30 Sisend F651 L01 Masina 18

Phasor diagram

Foto 35. Voolu ja pinged nurgad

4.8. Dokumentatsioon

Jaotusseadme montaaži ja konfiguratsiooni tööde lõppedes on alati oluline koostada dokumentatsioon. Dokumentatsioon üldjuhul sisaldab:

Kliendile antakse kaasa digitaalselt:

- kõiki skeeme, mis sisaldab primaarskeemi, jaotusseadme skeeme, kaitsmete ja sideprojekti, *RTU* ja sideskeeme ning palju muud;
- sätteid (Lisa 33), mille põhjal on fiidriterminalid seadistatud ja testitud;

- seadmete raporteid (Lisa 32), mis sisaldavad tootjate poolt koostatud raporteid ja sertifikaate, mis kinnitavad seadme vastavust nõuetele;
- protokolle (Lisa 31), mis sisaldab kõikide tööde käigus koostatud protokolle;
- konfiguratsioonifailid, mis sisaldab kõikide seadmete konfiguratsiooni faile sealhulgas *RTU* ja terminalide konfiguratsiooni failid, uuendamisfailid, seadmete paroole, internetiaadresse ja signaalitabelit;
- juhendeid, mis sisaldab nii tootja poolseid kui ka Eltech Solutions OÜ poolt koostatud juhendeid (Lisa 35). Juhendid on mõeldud jaotusseadme kasutajale ja hoolduste tegemiseks et tagada õige kasutamine ja ohutus;
- fotosid, mis kajastab jaotusseadme (Foto 36), rekonstrueeritavate osade ja ruumide olukorda kus kõik tööd on lõpetatud. Fotod on oluliseks tõestusmaterjaliks näiteks üldisele tehnilisele olukorrale, ühendustele ja paigutusele.

Foto 36. Täielikult valmis jaotusseade

Dokumendi koostamisel on tähtis tagada andmete täpsus ja korrektsus. Kõik dokumendid, raportid ja protokollid digiallkirjastatakse (Lisa 34) Eltech Solutions OÜ poolt vastavalt nende isikute poolt, kes oma töö eest vastutavad.

KOKKUVÕTE

Käesoleva töö eesmärgiks oli Masina 18 katlamaja jaotusseadme rekonstrueerimine, mille käigus viidi läbi jaotusseadme uuendamine ja seadistamine vastavalt kehtivatele normidele ja ohutusstandarditele. Töö esimeses etapis teostati jaotusseadme analüüs, mille käigus tuvastati mitmed puudused ja kitsaskohad, mis ei vastanud tänapäevastele nõuetele. Sellest tulenevalt tehti otsus jaotusseadme rekonstrueerimiseks, et tagada selle nõuetekohane toimimine ja ohutus.

Töö järgmises etapis uuriti kehtivaid norme ja tehnilisi nõudeid, mille alusel valiti sobivad seadmed ja komponendid rekonstrueerimiseks. Valikute tegemisel võeti arvesse objekti eripära ning vajadusi, et tagada jaotusseadme efektiivne ja ohutu toimimine. Töö viimases etapis teostati jaotusseadme seadistamine ja testimine. Seadistustööde käigus konfigureeriti seadmed vastavalt projektdokumentatsioonile ja tehnilistele parameetritele. Testimistööde käigus kontrolliti seadmete korrektset toimimist ning tuvastati ja kõrvaldati võimalikud vead ja puudused. Tööde tulemusena koostati ja väljastati vastavad dokumendid ja üleandmisdokumentatsioon.

Projekti valmimiseks kulutasid kaks inimest jaotusseadme seadistamisele ja testimisele ligikaudu 230 tundi. Töö maht oli märkimisväärne, kuna tegemist ei olnud standardlahendusega. Standardlahenduse korral tegeleb seadistamise ja testimisega üks inimene ning ligikaudu kulub aega 20-30 tundi, sõltuvalt alajaama töömahust. Lõputöö tulemusena valmis töökorras ja nõuetele vastav katlamaja jaotusseade, mis on tänaseks 100% töös ning tagab katlamaja efektiivse ja ohutu töötamise. Kõik pretensioonid on lahendatud ning kliendile on üle antud kõik vajalikud dokumendid. Töö annab ülevaate rekonstrueerimise protsessist, tehtud töödest ning nende olulisusest jaotusseadme nõuetekohase toimimise tagamisel.

SUMMARY

Setting Up and Testing the Reconstructed Masina 18 District Heating Plant

The aim of this thesis was to reconstruct a district heating plants distribution device, which involved updating and configuring the distribution device accoring to current standards and safety regulations. An analysis of the distribution device was carried out in the first stage of the project, which identified several shortcomings that did not meet modern requirements. As a result of the analysis, a decision was made to reconstruct the distribution device to ensure proper operation and safety of the device.

In the next chapter of the project, current standards and technical regulations were examined, according to which proper devices and components for the reconstruction were chosen. The selection process took into account the specific features and needs of the project to ensure the efficient and safe operation of the distribution device. In the last chapter, the distribution device was configured and tested. During the configuration, the devices were set up according to project documentation and technical parameters. Amidst the testing, equipments correct functioning was checked and possible errors and shortcomings were identified and eliminated. As a result of the project, relevant documents and transfer documentation were issued.

For the completion of the project, two people spent about 230 hours on configuring and testing. The amount of work was substantial, because it was not a standard solution. Standard solutions only require one person for configuration and testing and it takes approximately 20-30 hours, depending on the substation workload. As a result of this thesis, a functional and compliant to standards district heating plants distribution device was made, that is currently 100% operating and ensures the district heating plants effective and safe operation. All claims have been resolved and necessary documentation have been delivered to the client. This thesis proovides an overview of the reconstruction process, the works performed and their imporance in ensuring the proper functioning of the distribution device.

VIIDATUD ALLIKAD

- [1] Atemix, "Mis on SCADA?", 2023. https://scada.ee/kkk/mis-on-scada/ (vaadatud 1. mai 2023).
- [2] A-Kaabel, "IP kaitseaste", 2023. https://www.akaabel.ee/projekteerimine/ip-kaitseaste/ (vaadatud 21. aprill 2023).
- [3] H. Fengyuan, "Mis on SF6 gaas", *Henan Fengyuan Power Technology Co, Ltd*, 17. september 2020. http://ee.fyswitchgear.com/info/what-is-sf6-gas-50360034.html (vaadatud 21. aprill 2023).
- [4] Erkki, "Mis on LED ?", 2023. https://valgus.ee/mis-on-led/ (vaadatud 21. aprill 2023).
- [5] Vikipeedia, "RJ-pistikühendus", 16. august 2021. https://et.wikipedia.org/w/index.php?title=RJ-pistik%C3%BChendus&oldid=5945819 (vaadatud 21. aprill 2023).
- S. Siemens, "RUGGEDCOM RSG2100", 1. veebruar 2023. https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10256309#Benefits (vaadatud 26. veebruar 2023).
- [7] "HUe User Manual". https://www.se.com/ww/en/download/document/SE-USR-M588_EN/ (vaadatud 10. veebruar 2023).
- [8] Schneider Electric, "Easergy P3U30", 2023. https://www.se.com/ww/en/product/REL52049/easergy-p3u30-41-4u-16di-8do-uaux-48230v-di-220230v-2-x-lc/ (vaadatud 26. veebruar 2023).
- [9] "M006en_Lesson6_assignment_est.pdf". Vaadatud: 21. aprill 2023. [Online]. Available at: https://www.tud.ttu.ee/im/Madis.Lehtla/WEB/Sissejuhatus_digitaaltehnikasse/Praktikumijuhen did/M006en Lesson6 assignment est.pdf
- [10] O. Abramovych, "Basic understanding of IEC 61850", 30. aprill 2021. https://www.sgrwin.com/basic-understanding-iec-61850/ (vaadatud 21. aprill 2023).
- [11] O. Energy, "CMC356", 2023. https://www.omicronenergy.com/en/products/cmc-356/ (vaadatud 18. aprill 2023).
- [12] "Snapshot". Vaadatud: 18. aprill 2023. [Online]. Available at: https://www.omicronenergy.com/en/products/cmc-356/

LISAD

- Lisa 1. Vampset skaleerimine (kuvatõmmis programmist)
- Lisa 2. Vampset Miimika (kuvatõmmis programmist)
- Lisa 3. Vampset ekraanil mõõtmised ja info (kuvatõmmis programmist)
- Lisa 4. Vampset lühiste salvestamine (kuvatõmmis programmist)
- Lisa 5. Vampset mõõtmised (kuvatõmmis programmist)
- Lisa 6. Vampset sisendite nimed (kuvatõmmis programmist)
- Lisa 7. Vampset sisendite viide ja olek (kuvatõmmis programmist)
- Lisa 8. Vampset väljundid (kuvatõmmis programmist)
- Lisa 9. Vampset virtuaalsed väljundid (kuvatõmmis programmist)
- Lisa 10. Vampset indikaatorite nimed (kuvatõmmis programmist)
- Lisa 11. Vampset objektid (kuvatõmmis programmist)
- Lisa 12. Vampset loogika (kuvatõmmis programmist)
- Lisa 13. Vampset voolulõike aeglasem aste (kuvatõmmis programmist)
- Lisa 14. Vampset maatriks tabel (kuvatõmmis programmist)
- Lisa 15. Vampset logid (kuvatõmmis programmist)
- Lisa 16. Vampset aasta maksimum väärtused (kuvatõmmis programmist)
- Lisa 17. Vampset logimis seaded (kuvatõmmis programmist)
- Lisa 18. Vampset ringliiklus (kuvatõmmis programmist)
- Lisa 19. Vampset andme kaart (kuvatõmmis programmist)
- Lisa 20. Test Universe analoog väljundid (kuvatõmmis programmist)
- Lisa 21. Test Universe analoog sisendid (kuvatõmmis programmist)
- Lisa 22. Test Universe üldandmed (kuvatõmmis programmist)
- Lisa 23. Klemmid
- Lisa 24. Voolusisendid fiidriterminali
- Lisa 25. Pingesisendid fiidriterminalil
- Lisa 26. Reserv releed fiidriterminalil
- Lisa 27. Summavoolutransformaatorid keldris

Lisa 28. Easergy Builder and mepuntkid (kuvatõmmis programmist)

Lisa 29. Easergy Builder mõõtmised (kuvatõmmis programmist)

Lisa 30. Easergy Builder signaalid valmis (kuvatõmmis programmist)

Lisa 31. Tavakontroll

Lisa 32. Fiidriterminali testraport

Lisa 33. Kaitsesätete arvutus

Lisa 34. Digiallkirjastatud protokollid

Lisa 35. Lühijuhend kaitsereleele P3U

Lisa 1. Vampset skaleerimine (kuvatõmmis programmist)

	IOM & B MO	<u> </u>		≻ # ☆ 🗄		SE VED	>
Protection I TRAFO 2 L12 Masina 18 GENERAL	relay P3U30	INPUTS/OUTPUTS PROTECTION	MATRIX	LOGS	COMMUNICATION	DEVICE/TEST	DOCUMENTATION
ystem info		Scaling	- 1960		50		~ *
imic ocal panel com isturbance rec	nf Forder	CT primary		400	Δ		
ystem clock	ALL/SCORED/	CT secondary		400	A		
lock synchron:	zing	Nominal input		5	A		
		VT primary		6600	V		
		VT secondary		110	v		
		lo1 CT primary		100	A		
		Io1 CT secondary		1.0	A		
		Nominal Io1 input					
		VTo secondary		110.000	v		
		Voltage meas. mode		3LN+Uo			
		Enable Phase Rotation					
		Frequency adaptation mode		Auto			
		Adapted frequency		50.0	Hz		
		Angle memory duration		0.50	s		

Lisa 2. Vampset Miimika (kuvatõmmis programmist)

Frotection relay P3U30 TRAFO 2	<u>, 9% ≌₽₽₽₽₽ 00+ >¤≭X ≣≣ ®¤t</u> 005										
Masina 18 GENERAL MEASUBEMENTS											
System info Scaling	Mimic [18%]										
<mark>Mimic</mark> Local panel conf Disturbance recorder System clock											
Clock synchronizing											
	÷ + + O 3€ ₩₩										
	이 <u> 1</u> 이 · · · · · · · · · · · · · · · · · ·										
	- 6249V <u>112</u>										
	IRHFU Z Okvar										

Lisa 3. Vampset ekraanil mõõtmised ja info (kuvatõmmis programmist)

IS PROTECTION Danel conf NY 1 DISPLAY 2 IL1 U12 IL2 U23 IL3 U31 101 U0 contrast / backlight ctrl ht off timeout	MATRIX MEASUREME DISPLAY 3 UL1 UL2 UL3 U0	LOGS NT DISPLAYS DISPLAY 4 f Q Q S 11	DISPLAY 5 P.F. CosPhi	DATION DEVICE/TEST	DOCUMENTATION
rs PROTECTION panel conf NY 1 DISPLAY 2 IL1 U12 IL2 U23 IL3 U31 Io1 U31 contrast / backlight ctrl tht off timeout	MATRIX MEASUREME DISPLAY 3 UL1 UL2 UL3 U0	LOGS NT DISPLAYS DISPLAY 4 f P Q Q S 5	DISPLAY 5 P.F. CosPhi	CATION DEVICE/TEST	DOCUMENTATION
IS PROTECTION Danel conf IL1 DISPLAY 2 IL2 U23 IL3 U31 I01 U0 r contrast r backfight ctri ph off timeout	MATRIX MEASUREME DISPLAY 3 UL1 UL2 UL3 Uo	LDGS NT DISPLAYS DISPLAY 4 f p Q Q S S	DISPLAY 5 P.F. CosPhi -	CATION DEVICE/TEST	DOCUMENTATION
rs PROTECTION panel conf NY 1 DISPLAY 2 IL 1 U12 IL 2 U23 IL 3 U31 io1 U0 contrast r back[ight ctrl th off timeout	MATRIX MEASUREME DISPLAY 3 UL1 UL2 UL3 Uo	LDGS NT DISPLAYS DISPLAY 4 f P Q Q S 11	COMMUNIC DISPLAY 5 P.F. CosPhi -	DEVICE/TEST	DOCUMENTATION
An and a second	MEASUREME DISPLAY 3 UL1 UL2 UL3 Uo	NT DISPLAYS DISPLAY 4 f P Q S 11	DISPLAY 5 P.F. CosPhi		
NY 1 DISPLAY 2 IL1 U12 IL2 U23 IL3 U31 Ic1 U0 r contrast r backlight ctrl pht off timeout	MEASUREME DISPLAY 3 UL1 UL2 UL3 Uo	NT DISPLAYS DISPLAY 4 f P Q S S	DISPLAY 5 P.F. CosPhi		
IL DISPLAY 2 IL U12 IL U12 IL U12 IL U12 U23 IL U12 U23 U3 U3 U0 Vontrast reset timeout	MEASUREME DISPLAY 3 UL1 UL2 UL3 Uo	NT DISPLAYS DISPLAY 4 f P Q S S	DISPLAY 5 P.F. CosPhi - -		
NY 1 DISPLAY 2 IL1 U12 IL2 U23 IL3 U31 io1 Uo /contrast /packinght ctrl /phot off timeout seet timeout	DISPLAY 3 UL1 UL2 UL3 Uo	DISPLAY 4 f P Q S 11	DISPLAY 5 P.F. CosPhi - - 0		
IL1 U12 IL2 U23 IL3 U31 Io1 U0 / contrast ////////////////////////////////////	UL1 UL2 UL3 Uo	f P Q S 11	P.F. CosPhi - - 0		
IL2 U23 IL3 U31 Io1 Uo / contrast / backlight ctr1 ht off timeout	UL2 UL3 Uo	P Q S 11	CosPhi - -		
IL3 U31 Io1 Uo v contrast v backlight ctr1 pht off timeout	UL3 Vo	Q S 11	-		
lo1 Uo / contrast / backlight ctrl ght off timeout reset timeout	Uo	S 11	0		
/ contrast / backlight ctrl ght off timeout reset timeout		11	0		
r backlight ctrl pht off timeout reset timeout			2		
ht off timeout eset timeout			-		
eset timeout		10.	0 min		
		15.	.0 min		
tscreen		Mimi	ic		
alarmscreen		Γ.			
vevent time not in sync		Γ			
o for mimic display		[
ED release		, I			
ED release enable time		1.	.5 S		
for control buttons		Obj	1		
alue ecoling		Selectiv	e		
alue scalling		dm	v		
AIMIC			7		
ouffer size		50	10		
order		New-OI	d		
vents			-		
fc foi alu tyl VIII ou or	er control buttons r control buttons le scaling e MIC ffer size der eents	r control buttons r control buttons e esaling MIC ffer size der ents	r control buttons Ob, control buttons Selectiv se scaling P e d.m MIC G ffer size 55 der New-Ol ents	r control buttons Obj1 r control buttons Selective e escaling PU e d.m.y MIC ✓ fer size 500 der New-Old ents -	r control buttons Obj1 r control buttons Selective e escaling PU e d.m.y MIC ✓ fer size 500 der New-Old ents -

Lisa 4. Vampset lühiste salvestamine (kuvatõmmis programmist)

G L &	DOM OF DO MO	828			00	* > ‡	1 ∝ ∎		® °= €	BE VE	$ \geq $	
Protection I TRAFO 2 L12 Masina 18	relay P3U30											
GENERAL	MEASUREMENTS	INPUTS/OUTPU	ITS PF	ROTECTION	MATRD	<	LOGS	СОММ	UNICATION	DEVICE/TE	ST DOCUMEN	TATION
System info Scaling Mimic Local panel cor	nf	Distur	bance re	ecorder								
System clock	corder	Dist. r	ec. version				1.2					
lock synchroni	lzing			REC	ORDER CHA	NNELS						
		Ch		142.0	L1,IL2,IL3,Io1	UL1,UL2,UL3,U	,Ucomm,DI,I	00,Starts				
		Add n	ecorder cha	annel			-					
		Delete	recorder	channel								
		Remo	ve all chanr	nels			-					
		Recor	ding mode				Overflow					
		Samp	le rate				16/cycle					
		Recor	ding length	10			2.50	s				
		Pre tr	ig time				80	%				
		Distur	bance reco	ording event								
		Recor	der memor	ry events			10.92					
		maxin	ium unie s	etting			10.02	0				
				R	ECORDER I	.OG						
		141	Status	Trig source	Date I	h:mm:ss.ms						
		[2]	-		-							
		[3]	-									
		[4]			2							
		[5]	-	-	-	-						
		[6]	2	3 C	2	<i></i>						
		[7]	<i></i>	1	<i></i>							
		[8]	-		2	5						
		Clear	oldest buff	er .								
		Clear	all buffers									
		Status					Run					
		Recor	ding compl	letion			80	%				

Lisa 5. Vampset mõõtmised (kuvatõmmis programmist)

688 ∞	6 <u>2 2 2 2 2 2 0</u>	<u>ः</u> रू‡ा ≣	E ® 🛱	³ E ♥ ☞ ▷
Protection relay P3U30				
TRAFO 2				
L1Z Masing 49				
GENERAL MEASONEMENTS IN		INTER LOUS	COMMONICATION	DEVICE/TEST DOCOMENTA
Current and voltage	Voltage minimums and maximum	s		
Voltage harmonics				
Power Po-diagram				
Energy	Clear min & max	-		
Phasor diagram	Di to clear min & max	-		
Current minimums and maximums	1142 1			
Voltage minimums and maximums	UI2 W	11N/MAA 6238	V	
Demand values		30.01.2023	•	
RMS demand values		15-15-35		
voitage sag & swell	Maximum of 112	6254	V	
	-	30.01.2023		
	-	15:15:45		
	U23 N	IIN/MAX		
	Minimum of U23	6204	V	
	-	30.01.2023		
	-	15:15:35		
	Maximum of U23	6222	V	
	-	30.01.2023		
	-	15:15:37		
	U31 M	IN/MAX		
	Minimum of U31	6234	V	
	-	30.01.2023		
	-	15:15:35		
	Maximum of U31	6253	v	
		20.04.0000		

Lisa 6. Vampset sisendite nimed (kuvatõmmis programmist)

	COM 2 18 18	<u> </u>			+ # ☆ =			>
Protection (TRAFO 2 L12 Masina 18 GENERAL	MEASUREMENTS	INPUTS/OUTPUTS	PROTECTION	MATRIX	LOGS	COMMUNICATION	DEVICE/TEST	DOCUMENTATION
Names for digi	tal inputs	Names for	digital inputs	-1997) - 199				~ *
Digital inputs Names for virt	ual inputs		000 9 00710-000 0000					
Virtual inputs Names for outpu	it relays			Digital inputs				
Names for virt	ual outputs	lanut I	labol					
Names for funct	tion buttons	input i		Not VI väliae				
Function butto	ns							
Timers Objects		3 1		NO2 VE acca				
Release latche	5.5 Charles and a state of the state							
Names for logi: Logic	c outputs	5 1	015	NO5 MI välise				
		6		006 ML sees				
		7	DI7 I	007 VA kontroli 1				
		8 (DI8 I	0108 VA kontroll 2				
		9 [D19 I	0109 Vedru vinnastamata				
		10 [DI10 I	0110 SF6 alarm P>				
		11 (DI11 I	0111 SF6 leke P>>				
		12 [DI12 I	DI12 DC KL väljas				
		13 [DI13 I	0113 Kaabel pingetu				
		14 [DI14 I	0114 VL meh. blok.				
		15 (DI15 I	0115 Tehno. kaitse alarm				
			2002					

Lisa 7. Vampset sisendite viide ja olek (kuvatõmmis programmist)

689	2 2	<u>&</u> *0,		D © →-	> ;#			
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS INPU	ITS/0UTPUT	S PROT	ECTION	MATRIX	LO	GS COM	MUNICATION DEVI	CE/TEST DOCUMENTATION
Names for digital inputs	Distantis	1	inte-		-	L.		1
igital inputs	Digital ir	nputs						
ames for virtual inputs /irtual inputs								
mes for output relays			Dig	ital inputs				
ames for virtual outputs	Mode					DC	1	
ames for function buttons	Counters	s max value				16 bit	1	
inction buttons							<u> </u>	
bjects	1				Dig	jital inputs		
elease latches	Input	State	Polarity	Delay	On Event	Off Event	Alarm display	Counters
gic	1	0	NO	0.00 s	On	On	On	28
	2	1	NO	0.00 s	On	On	On	39
	3	0	NO	0.00 s	On	On	On	11
	4	1	NO	0.00 s	On	On	On	9
	5	1	NO	0.00 s	On	On	On	10
	6	0	NO	0.00 s	On	On	On	12
	7	1	NC	10.00 s	On	On	On	20
	8	0	NC	10.00 s	On	On	On	15
	9	0	NC	15.00 s	On	On	On	4
	10	0	NC	0.00 s	On	On	On	7
	11	0	NC	0.00 s	On	On	On	5
	12	0	NO	0.00 s	On	On	On	0
	13	0	NO	0.00 s	On	On	On	10
	14	0	NC	15.00 s	On	On	On	9
	15	0	NO	0.00 s	On	On	On	6
				10000	2	1944 C		10

Lisa 8. Vampset väljundid (kuvatõmmis programmist)

G II B ON & N N			
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS I	NPUTS/OUTPUTS PROTECTION	MATRIX LOGS COMMUNICAT	ION DEVICE/TEST DOCUMENTATION
Names for digital inputs Digital inputs Names for virtual inputs Virtual inputs	Names for output relays		
Names for output relays		Description	
Names for virtual outputs	Descr(Trip relay 1)	T01 VL välja	
Names for function buttons	Descr(Trip relay 2)	T02 VL sisse	
Function buttons	Descr(Trip relay 3)	T03 Kaareakitse töö > MPJS	
Objects	Descr(Trip relay 4)	T04 Kaareakitse töö > MPJS	
Release latches	Descr(Trip relay 5)	Trip relay 5	
Names for logic outputs Logic	Descr(Trip relay 6)	Trip relay 6	
	Descr(Trip relay 7)	Trip relay 7	
	Descr(Signal relay 1)	A1 Remote closing	
		Label	
	Label(T1)	T1	
	Label(T2)	T2	
	Label(T3)	ТЗ	
	Label(T4)	T4	
	Label(T5)	Т5	
	Label(T6)	Т6	
	Label(T7)	77	
	Label(A1)	A1	

Lisa 9. Vampset virtuaalsed väljundid (kuvatõmmis programmist)

	€ <u>%</u> <u>&</u> <u>&</u> <u>&</u>	â® UO∻ ≻♯☆ ▦▤ ®°₄° ⊻∞⊳			
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS INF	PUTS/OUTPUTS PROT	ECTION MATRIX LOGS COMMUNICATION DEVICE/TEST DOC	UMENTATION		
Names for digital inputs Digital inputs Names for vitual inputs Virtual inputs	Names for virtual	outputs			
Names for output relays		Virtual outputs			
Names for virtual outputs LED names	input Label	Description			
Names for function buttons	1 V01	V001 Filder töös			
Function buttons	2 1/02	V002 Fildri rike			
Diects	2 1/02	VOR2 Kaites töö			
Release latches	3 V03	3 VOS VOS VAISE IO			
Names for logic outputs	4 V04	F VOS VOGS Judenke			
Logic	5 V05	5 VOS VOUS Kaadel pingetu			
	7 1/07	VUO VUUO STO BIRI OIIK			
	2 VO2	VOP Victual autout 9			
	0 1/00	VOs Virtual output s			
	9 V09	V040 Virtual output 9			
	10 V010	Virtual output to			
	42 1/042	Virtual output 1			
	12 V012	Virtual output 12			
	13 V013	Virtual Output 13			
	14 V014				
	15 V015				
	16 V016	Virtual output 16			
	1/ V017				
	18 VO18				
	19 VO19	Virtual output 19			
Lisa 10. Vampset indikaatorite nimed (kuvatõmmis programmist)

Masina18 L12 30. File Edit View	01.23 - Vampset Settings Communica	tion Device Library	Disturbance Record Help	1					
688	IDM & S MO	022		00→	≻ # 2		0		>
Protection r TRAFO 2 L12 Masina 18	elay P3U30								10. VI
GENERAL	MEASUREMENTS	INPUTS/OUTPUTS	PROTECTION	MATRIX	LOG	S COMMUNIC	ATION	DEVICE/TEST	DOCUMENTATION
Names for virtu Names for outpu Names for virtu	ai inputs t relays al outputs			CONFIGUR/	ABLE LEDs	(A-H)			
Names for virtu	al outputs	Label	Description	CONFIGURA	Lahel	Description			
Names for funct	ion buttons	LA	LA LA Voolukaitse töö			LB Fiidri rike			
Timers	IS	LC	LC Maaühenduskaitse tö	ö	LD	LD VL juhitamatu			
Objects		LE	LE Trafokaitse töö		LF	LF Siderike			
Names for logic	outputs	LG	LG Trafokaitse alarm		LH	LH Kaarekaitse töö/	blok.		
Logic									

Lisa 11. Vampset objektid (kuvatõmmis programmist)

💭 Masina18 L12 30 File Edit View	.01.23 - Vampset Settings Communica	ation Device Library	Disturbance Record	Help				
GUA	COM & M	28	L 1 L L	00→+	≻#×	BE ® 4		
Protection TRAFO 2 L12 Masina 18	relay P3U30	999 - 999 			4976-			
GENERAL	MEASUREMENTS	INPUTS/OUTPUTS	PROTECTION	MATRIX	LOGS	COMMUNICATION	DEVICE/TEST	DOCUMENTATION
Names for digi Digital inputs Names for virt Virtual inputs	tal inputs ual inputs	Objects						
Names for outp	ut relays	DI for Remo	ite/Local		-	Ĩ		
Names for virt	ual outputs	Input for Re	mote control block			-		
Names for func	tion buttons	Pwd for mi	mic control		1			
Function butto	ns	Remote/Lo	cal State		LOCAL			
Timers Objects		Remote co	ntrol block state			-		
Release latche	s	Object for a	ontrol buttons		Obi1	-		
Names for logi	c outputs	Mode for c	ontrol buttons		Selective			
LUGIC								
			1	CTRL OBJECT 1				
		Label(Obj1	0)		Obj1 VL			
			te		Close			
			Obj1 VL final trip by			-		
		Di for 'obj o	pen'		DI1			
		DI for 'obj c	losed'		DI2	-		
		Di for 'obj r	eady'		4			
		Max ctrl pu	ise length		0.20	s		
		Completion	timeout		10.00	s		
		Object 1 co	ntrol		-			
		DI for remo	te open ctr					
		DI for remo	te close ctr					
		Di for local	open ctr		-			
		DI for local	close ctr			-		
		Inactivity da	ivs limit		500			
		Last state	hange		23.01.2023			
		Inactivity da	iys left		493			
		Inactivity al	arm		inactive	-		
		Clear alarm	r.		2			
				CTRL OBJECT 2				
		Label(Obj2)	6		Obj2 LL			
		Obj2 LL sta	te		Close			
		Obj2 LL fina	il trip by		-			
		DI for 'obj o	pen'		DI3			
		DI for 'obj c	losed'		D14			
		DI for 'obj r	eady'		4			
		Max ctrl pu	ise length		0.20	s		
		Completion	timeout		10.00	s		
		Object 2 co	ntrol		-			

Lisa 12. Vampset loogika (kuvatõmmis programmist)

GEB COM & A B	S Late $O O → → # ∴ E = O ♀ ↓ ∨ ⊗ >$
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS II	IPUTS/DUTPUTS PROTECTION MATRIX LOGS COMMUNICATION DEVICE/TEST DOCUMENT.
Names for digital inputs Digital inputs Names for virtual inputs Virtual inputs Names for output relays Names for virtual outputs LED names Names for function buttons Function buttons Timers Objects Release latches Names for logic outputs Logic	Logic [25% 11% 30%]
	Image: Construction of the sector of the
	DI07 VA kontroll 1 DELAY DI08 VA kontroll 2 AND TOF 0 ms
	DI02 VL sees Logic output 3

Lisa 13. Vampset voolulõike aeglasem aste (kuvatõmmis programmist)

Masina 18 L 10 13.01.23 - Vampset File Edit View Settings Communication	Device Library - [Disturbance Record	Help					
6 18 8 mm 8 18 2	22		()()→+	> # ☆ =	8= ®°# «]	
Protection relay P3U30 VÕRGUPUMP 1 L10 Masina 18								
GENERAL MEASUREMENTS INP	ITS/OUTPUTS	PROTECTION	MATRIX	LOGS		DEVICE/TEST	DOCUMENTATION	
		Indizonon		1				
Fault locator 21FL	Phase ove	rcurrent >	50/51					
Valid protection stages Protection stage status	C States of Sole Manager States							
Protection stage status 2								
Programmable delay curves	Enable for t	,						
Cold load pick-up/inrush								
Phase overcurrent I> 50/51	100	1			and the second			
Phase overcurrent I>> 50/51	Max. of IL1	IL2 IL3		0	A			
Phase overcurrent I>>> 50/51	Status							
Voltage-dependent o/o Tra 51V	Estimated t	ime to trip		0.0				
Dir, phase overcurrent Ip> 67	Estimated t	inte to trip		0.0	3			
Dir. phase overcurrent Io>> 67	Start counte	er		0				
Dir. phase overcurrent Ip>>> 67	Trip counte	r		/0				
Dir. phase overcurrent Ip>>>> 67								
Directional power P< 32	Cot group 4	Disontrol						
Directional power P<< 32	Set group i	Dicontrol		-				
Phase undercurrent I< 37	Set group 2	Di control		5				
Broken conductor 12> 46BC	Set group 3	DI control		-				
F/F overourrent To> FON/F	Set group A	Dicontrol						
E/F overcurrent Io>> 50N/5	Jet group 4	Dicollardi						
E/F overcurrent Io>>> 50N/5	Group			1				
E/F overcurrent Io>>>> 50N/5				Group 1	Group	2 Gro	up 3 G	roup 4
E/F overcurrent Io>>>> 50N/5	Pick-up set	ting		85	A 85	5 A	85 A	85 A
Direct. E/F overcurrent Ioq> 67N	Dick up eet	ting		0.95	vin 0.90	i vin	96 xlp	0.95 vin
Direct. E/F overcurrent Iop>> 67N	Fick-up set	ung		0.05	AIII	, xin	NOS XIII	0.05 AIII
Direct. E/F overcurrent loop>>> 6/N	Delay curve	family		IEC	IEC		IEC	IEC
Overvoltage U> 59	Delay type			LTI	LT	I	LTI	LTI
Overvoltage U>> 59	Inv. time co	efficient k		0.300	0.300	0.	300	0.300
Overvoltage U>>> 59	to the second se			4.00	4.00			4.00
Undervoltage U< 27	inverse det	ay (zux)		1.09	s 1.0:	1 5		1.09 8
Undervoltage U<< 27	Inverse del	ay (4x)		11.99	s 11.99) s 11	.99 s	11.99 s
Undervoltage U<<< 27	Inverse del	ay (1x)		600.02	s 600.02	2 s 600	.02 s 6	300.02 s
Negative seq. voltage U2> 47					Contraction of the second			Manager of the
Negative seq. voltage U2>> 47								
Capacitor overweltage U2>>> 4						Common settings		
Neutral vol displacement No> 59N	Include har	monics		j.		Off		
Neutral vol. displacement Uo>> 59N				10				
Neutral vol. displacement Uo>>> 59N	1	Deter	function norm	otore	Contraction of the local division of the loc			
Over and under frequency fX 81	6	Delay	runcuon param	etels				
Over and under frequency fXX 81	Constant A			120.000				
Under frequency f< 81U	Constant B			1.000				
Under frequency f<< 810	Constant C							
Programmable stage Prgl 99	Constant							
Programmable stage Prg1 99	Constant D			-				
Programmable stage Prg3 99	Constant E			5				
Programmable stage Prg4 99	1							
Programmable stage Prg5 99				FAULTLOG				
Programmable stage Prg6 99	1	100						
Programmable stage Prg7 99	Dat	te hh:mm:ss.ms	Group Fault	type Fault current	t Elapsed delay	Pre-fault current		
Programmable stage Prg8 99	[1] -	7	7	0.00 xin	0 %	0.00 xin		
Breaker failure 50BF	10.000			0.00 vin	0.%	0.00 xln		
Prosker failure 1 CODE V	[2] -	-		0.00 AIII	V 70			
Breaker failure 1 50BF V	[2] -	-	-	0.00 xin	0.1%	0.00 xin		
Sreaker failure 1 50BF V	[2] - [3] -			0.00 xin	0 %	0.00 xin	-(1)	

Lisa 14. Vampset maatriks tabel (kuvatõmmis programmist)

Lisa 15. Vampset logid (kuvatõmmis programmist)

Masina18 L12 30.01.23 - Vampset				
File Edit View Settings Communication	ation Device Library Disturbance Recor	rd Help		
GEB Com & A A	1 2 2 2 2 2 2 2	<u>n</u> 007+ ≯		
Protection relay P3U30				
TRAFO 2				
1 12				
Masina 18				
				IN L
GENERAL MEASUREMENTS	INFOTS/001F015 PROTECTION	MATHIA	LOGS COMMONICATION DEVICE/TEST DOCOMENTATION	
Event buffer	Event huffer			
Month max	Event bullet			
Voltage interrupts				
Event enabling - stages 1	[1] 13.01.2023	13:01:05.366 00E43	Disturbance rec. deleted	
Event enabling - stages 2	[2] 13.01.2023	14:09:15.622 00E31	Di16 on	
Event enabling - objects Event enabling - AR	[3] 13.01.2023	14-09-21 633 00F32	Dit6 off	
Event enabling - logic	[4] 20.04.2023	10:07:04 886 00E04	DI2 off	
Event enabling - other	[4] 20.01.2023	10.07.04.000 00004	Diz on	
DI event texts	[5] 20.01.2023	10:07:04.888 00E01	DI OR	
	[6] 20.01.2023	10:07:04.893 /1E01	Obj1 VL open	
	[7] 20.01.2023	10:07:15.756 00E12	DI6 off	
	[8] 20.01.2023	10:07:15.758 00E09	DI5 on	
	[9] 20.01.2023	10:07:15.762 73E01	Obj3 ML open	
	[10] 20.01.2023	10:07:21.850 00E27	DI14 on	
	[11] 20.01.2023	10:07:44.112 00E02	DI1 off	
	[12] 20.01.2023	10:07:44.114 00E03	DI2 on	
	[13] 20.01.2023	10:07:44.118 71E02	Obj1 VL closed	
	[14] 20.01.2023	10:07:54.116 00E16	DI8 off	
	[15] 20.01.2023	10:07:54.116 00E13	DI7 on	
	[16] 20.01.2023	10:07:56.446 00E28	DI14 off	
	[17] 20.01.2023	11:02:15.161 00E04	DI2 off	
	[18] 20.01 2023	11:02:15.162 00E01	Diton	
	[10] 20.01.2023	11-02-15 160 71501	Obit VI open	
	[10] 20.01.2023	44-02-25 467 00545		
		11.02:25.167 00E15	Dis on	
	[21] 20.01.2023	11:02:25.167 00E14	DI7 off	
	[22] 20.01.2023	11:02:41.455 00E27	DI14 on	
	[23] 20.01.2023	11:03:30.042 00E10	DI5 off	
	[24] 20.01.2023	11:03:30.045 00E11	DI6 on	
	[25] 20.01.2023	11:03:30.050 73E02	Obj3 ML closed	
	[26] 20.01.2023	11:03:45.048 00E02	Dit off	

Lisa 16. Vampset aasta maksimum väärtused (kuvatõmmis programmist)

680 00 00 00 00 00 00 00 00 00 00 00 00 0	2 2 2	1		Ú →+	5+ ∰	22 問)© _# 0	3 _E	\otimes	
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS INPR	UTS/OUTPUTS	PROTE	CTION M	IATRIX	L(065	COMMUN	IICATION	DEVICE	/TEST	DOCUMENTA
Event buffer			PAST	31 DAYS							
Running hour counter	Measureme	nt	Date Tim	e of day				1			
Voltage interrupts		1230 A	11.01.2023	11:29:38				1			
Event enabling - stages 1		4200 A	44.04.2022	44.20.27							
Event enabling - objects		1250 A	11.01.2023	11.25.37							
Event enabling - AR		256 A	23.01.2023	10:09:24							
Event enabling - logic		20.10 A	12.01.2023	12:14:39							
Event enabling - other	Description	1	Measurement	Date	Time	of day					
JI event texts	Pma	x	261 k	N 20.01.	2023	15:55:24		1			
	Pmir	n	-9754 k	N 11.01.	2023	11:29:44		1			
	Qma	x	1753 kva	r 23.01.	2023	10:09:24					
	Omi		5506 kur	44.04	2023	44-20-44					
	Grim		-0000 KV2		2023	11.23.44					
	Sma	X	11240 KV	A 11.01.	2023	11:29:44		1			
					PAST 12	2 MONTHS	;				
	Month	Year	IL1max IL2	2max I	IL3max	lomax	Pmax	Pmin	Qmax	Qmin	Smax
	JANUARY	2023	1230 A	1290 A	1289 A	20.10 A	261 kW	0 kW	1753 kvar	0 kvar	11246 kVA
	FEBRUARY	2022	0 A	0 A	0 A 0	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	MARCH	2022	0 A	0 A	0 A	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	APRIL	2022	0 A	0 A	0 A	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	MAY	2022	0 A	0 A	0 A	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	JUNE	2022	0 A	0 A	0 A	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	JULY	2022	0.4	0 A	0.4	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	AUGUST	2022	4000 A	A 0	3784 A	0.02 4	60308 kW	0 kW	9 kvar	0 kvar	69617 kVA
	SEPTEMBED	2022	0.4	0.0	0.4	0.00 A	0 kW	0.kW	0 kyar	0 kvar	0 kVA
	OCTOBER	2022	0.4	0.4	0.4	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA
	NOVEMBED	2022	0.4	0.4	0.4	0.00 A	0 1414	0 1-14	0 kwan	0 kvar	0 10/4
	NOVEMBER	2022	UA	UA	UA	0.00 A	UKW	UKW	UKVar	UKVAL	UKVA
	I DECEMBER	2022	0 A	0 A	0 A	0.00 A	0 kW	0 kW	0 kvar	0 kvar	0 kVA

Lisa 17. Vampset logimis seaded (kuvatõmmis programmist)

6 L 8		€% %	£ £ £ £	() () →-	≻#≈ ≣	≣ ® º _# €	E V C	>
Protection I TRAFO 2 L12 Masina 18	relay P3U30							
GENERAL	MEASUREMENTS	INPUTS/OUTPUTS	PROTECTION	MATRIX	LOGS	COMMUNICATION	DEVICE/TEST	DOCUMENTATION
Event buffer Month max Running hour co Voltage interry	ounter	Event en	abling - stages 2					
Event enabling	- stages 1			T> events				
Event enabling	- objects	'Start On' e	vent		✓			
Event enabling	- AR	'Start Off'	event		✓			
Event enabling Event enabling	- logic - other	'Trip On' er	vent		✓			
DI event texts		'Trip Off' e	vent		✓			
		'Status Ch	g' event					
				loInt> events				
		'Start On' e	vent		✓			
		'Start Off'	event		✓			
		'Trip On' e	vent		✓			
		'Trip Off' e	vent		✓			
		'Status Ch	g'event					

Lisa 18. Vampset ringliiklus (kuvatõmmis programmist)

📕 Masina18 L12 30.01.23 - Vampset									
File Edit View Settings Communicatio	n Device Library Disturbance Record	lelp							
GIB Com & A 15	€ <u>%</u> <u>L L L L L</u>	()()→+	シばシジ闘		EVE	>			
Protection relay P3U30 TRAFO 2 L12 Masina 18		WATER	1000			DOCUMENTATION			
GENERAL MEASUREMENTS	INPOTS/DUTPOTS PROTECTION	MATHIX	LUGS	UMMUNICATION	DEVICE/TEST	DUCUMENTATION			
Protocol configuration <u>RSTP configuration</u> IEC 61850 main config IEC 61850 data map(1)	RSTP configuration								
IEC 61850 data map(2)		RSTP PROTOCOL	FOR ETHERNET						
IEC 61850 data map(3) IEC 61850 data map(4)	Enable for RSTP								
IEC 61850 data map(5)	Bridge priority		32768						
IEC 61850 data map(6) IEC 61850 data map(7)	Hello time		2 s						
IEC 61850 data map(8)	Forward delay		15 s						
IEC 61850 data map(9) IEC 61850 data map(10)	Max Age	Max Age							
IEC 61850 data map(11)	Bridge role		Not Root						
IEC 61850 data map(12)	Root MAC address		94:B8:C5:46:1	B:4					
IEC 61850 data map(13)	Migrate time		3 s						
IEC 61850 measurement config	Protocol version		2						
IEC 61850 BRCB configuration IEC 61850 URCB configuration			Port 1	Port 2	1				
IEC 61850 dynamic datasets	Port priority		128	128					
IEC 61850 generic events GOOSE configuration	Admin edge		No	No	(
GOOSE NI names	Auto edge	Auto edge			(
GOOSE GCB1: data points	Current state		Forwarding Forwarding		L				
GOOSE Subscriber: data points	Current role		Designated Root						
GOOSE matrix	Root Path cost	t Path cost			0				
	RSTP packets received		5	28	£				
	RSTP packets sent		33	5	8				
	Ethernet packets received		18	92					

Lisa 19. Vampset andme kaart (kuvatõmmis programmist)

CIB Com	ک 🕱 🗲	£ £ £	<u>ti</u> ()())→+			>	
Protection relay P3U30 TRAFO 2 L12 Masina 18 GENERAL MEASUREMENTS I	NPUTS/OUTPUTS	PROTECTIO	N MATRIX	LOGS COMMUNIC	CATION DEVICE/TEST	DOCUMENTATION	
Protocol configuration RSTP configuration IEC 61850 main config IEC 61850 data map(1) IEC 61850 data map(2)	IEC 6185	50 data map(3)					
IEC 61850 data map(2)				IEC 6185	0 data map		
IEC 61850 data map(4)	Index	LN	Description	Dataset 1	Dataset 2	Dataset 3	In use
IEC 61850 data map(5)	60	DI02GGIO46	Digital input 2	No	No	No	No
IEC 61850 data map(6)	61	DI03GGIO47	Digital input 3	No	No	No	No
IEC 61850 data map(8)	62	DI04GGI048	Digital input 4	No	No	No	No
IEC 61850 data map(9)	62	DIOECCIO40	Digital input F	No	No	No	No
IEC 61850 data map(10)	03	0105001049	Digital input 5	NO	NO	NO	NO
IEC 61850 data map(11)	64	DI06GGIO50	Digital input 6	NO	NO	NO	NO
IEC 61850 data map(13)	65	DI07GGI051	Digital input 7	No	No	No	No
IEC 61850 data map(14)	66	DI08GGI052	Digital input 8	No	No	No	No
IEC 61850 measurement config	67	DI09GGI053	Digital input 9	Yes	No	No	Yes
IEC 61850 URCB configuration	68	DI10GGIO54	Digital input 10	Yes	No	No	Yes
IEC 61850 dynamic datasets	69	DI11GGI055	Digital input 11	Yes	No	No	Yes
IEC 61850 generic events	70	DI12GGI056	Digital input 12	Yes	No	No	Yes
GOOSE configuration	74	DH2CCIO57	Digital input 12	Vac	No	No	Vee
GOOSE GCB1: data points	1	0113031057	Digital input 15	tes	NO	NO	tes
COORE CORO, data mainta	72	DI14GGI058	Digital input 14	Yes	No	No	Yes
GOUSE GUB2: data points	73	DI15GGI059	Digital input 15	Yes	No	No	Yes
GOOSE Subscriber: data points							

Lisa 20.	Test	Universe	analoog	väljundid	(kuvatõmmis	programmist)
----------	------	----------	---------	-----------	-------------	--------------

Analog C	Dutputs Binary / A	Analog Ir	nputs I	Binary C	outputs	DC An	alog Inp	uts T	ime Sou	rce					
			CMC3 JH5	56 V A 355		CMC3 JH5	56 V B 35S		CMC3 JH5	56 I A 355			CMC3 JH5	56 I B 355	
Display Name	Connection Terminal	1	2	3	N		N	1	2	3	N	1	2	3	
VL1-E	X6:1	Х													
V L2-E	X6:2		Х												
V L3-E	X6:3			Х											
V(2)-1						Х									
LL1	X4:3							Х							
IL2	X4:6								Х						
I L3	X4:9									Х					
I(2)-1												X			
1(2)-2													X		
I(2)-3														X	

Lisa 21. <i>Test Universe</i> analoog sisendid	(kuvatõmmis programmist)
--	--------------------------

al	Analog Outputs	Binary / Analog Inp	uts	Binar	y Out	puts	DC	Analo	g Inpu	uts	Time S	Source	e												
													C	MC35	56										
													J	H535	s										
		Function	Bin	ary	Bir	ary	Bin	ary	Bin	ary	Bin	ary	Bin	ary	Bin	ary	Bin	ary	Bin	ary	Bin	ary	C	ount	er
		Potential Free	-		E	/	E										E								
		Nominal Range																							
		Threshold																							
	Display Name	Connection Terminal	1+	1-	2+	2-	3+	3-	4+	4-	5+	5-	6+	6-	7+	7-	8+	8-	9+	9-	10+	10-		2	
	Start	X2:25 - X2:29	Х																						Π
	Trip	X2:26 - X2:30			Х																				
	Close command						Х																		
	Bin. in 4								Х																
	Bin. in 5										Х														
	Bin. in 6												Х												
	Bin. in 7														Х										
	Bin. in 8																Х								

-Device		Nominal Value	is the second se		Other Device Properties	
Name/description:	ja I>>>	Number of pl	nases: 0 2	• 3	Drop-out time:	20,000 ms
Manufacturer:		f nom:	50,000 Hz]	-Limits	
			Primary	Secondary	V max:	200,000 V (L-L)
Device type:		V nom:	6,600 kV (L-L)	110,000 V (L-L)	I max:	20,000 A
Device address:			3,811 kV (L-N)	63,509 V (L-N)	Overload Detection Sensitivity	0.000 s
Sarial/model pumbers					O Low Off	0,000 3
Senarymoder number .		I nom:	400,000 A	1,000 A		
		Residual Volta	age and Current		Debounce/Deglitch Filters Debounce time:	3,000 ms
Additional information 1:		Direction of r	esidual	3 * V0	Deglitch time:	0,000 s
Additional information 2:		Direction of r	esidual	2 \$ 10		
Substation		current:		-5 10	_	
Name:		Instrumer	nt transformers			
Address:			Primary	Secondary		
Bay		VN:	3,811 kV	63,509 V		
Name:		This	400.000 A	1.000 4		
Address:		TIA:	100,000 H	1,000 /		

Lisa 22. Test Universe üldandmed (kuvatõmmis programmist)

Lisa 23. Klemmid

Lisa 25. Pingesisendid fiidriterminalil

Lisa 26. Reserv releed fiidriterminalil

Lisa 27. Summavoolutransformaatorid keldris

		С –	• ←	€ ⊻	Auto address	IP Expand	AB LAN1	V	Position 1
OSI	ddr): H								
igita	I Inputs Digital Out	puts							
P	revious								
	DI_ISIM_9	DI_ISIM ~	Invert N	∨ TF(ms)	10 TM(ms*10)	0 NChat	0 TChat	0	
2	DI_ISIM_10	DI_ISIM ~	Invert Y	∨ TF(ms)	10 TM(ms*10)	0 NChat	0 TChat	0	
7	DI_ISIM_11	DI_ISIM ~	Invert Y	V TF(ms)	10 TM(ms*10)	0 NChat	0 TChat	0	
7	DI_ISIM_12	DI_ISIM ~	Invert N	V TF(ms)	10 TM(ms*10)	0 NChat	0 TChat	0	
2	DL ISIM_13	DI_ISIM ~	Invert N	✓ TF(ms)	10 TM(ms*10)	0 NChat	0 TChat	0	
2	DI ISIM 14	DI ISIM V	Invert N	TE(ms)	10 TM(ms*10)	0 NChat	0 TChat	0	
	DUSIM 15	- DLISIM	lovert N	TE(ma)	10 TM(mott0)	NChai			
×		DURM		✓ IF(IIIS)					
\leq	DI_ISIM_10		invert N	V TF(ms)	10 TM(ms*10)	NChar	U IChat	<u> </u>	

Lisa 28. Easergy Builder and mepuntkid (kuvatõmmis programmist)

2 W	orkSpace 💾 Save 🏦 S	Send Configuration to	RTU File	View Help	Add-Ons						
Dev	ices Channels	coreDb Syn	chronization								
30											
Stat	us Command	Analog Setp	oint dbNET								
	Name	s	Source	~	AND 🗸	Destination	~	Ń	2 📉 🗆 Error r	ows	
	Name	Description	Source1 Device	Source1 Coordinates	Source1 Vmask	Destination1 Device	Destination1 Coordinates	Destination1 Threshold	Destination2 Device	Destination2 Coordinates	Destination2 Threshold
16	MX00184	L14 Relay IFLTG	L14	[L14Relay/IFLTG							
7	MX00185	L14 Relay IFLTG	L14	[L14Relay/IFLTG							
18	L14_DIAG_HEALTH	Diagnostic point (L14	DIAG:HEALTH							
19	MPJS_DIAG_HEALTH	Diagnostic point (MPJS	DIAG:HEALTH							
50	M1_Ua	faasipinge A	M1	IR:0:F		ModBus	HR:6021:F	0.05	Modbus2	HR:6021:F	0.05
51	M1_Ub	faasipinge B	M1	IR:2:F		ModBus	HR:6023:F	0.05	Modbus2	HR:6023:F	0.05
52	M1_Uc	faasipinge c	M1	IR:4:F		ModBus	HR:6025:F	0.05	Modbus2	HR:6025:F	0.05
3	M1_ILa	faasivoolA	M1	IR:6:F		ModBus	HR:6027:F	1	Modbus2	HR:6027:F	1
4	M1_ILb	faasivool B	M1	IR:8:F		ModBus	HR:6029:F	1	Modbus2	HR:6029:F	1
5	M1_ILc	faasivool C	M1	IR:10:F		ModBus	HR:6031:F	1	Modbus2	HR:6031:F	1
56	M1_P	aktiivvoimsus	M1	IR:52:F		ModBus	HR:6033:F	10	Modbus2	HR:6033:F	10
7	M1_Q	reaktiivvoimsus	M1	IR:60:F		ModBus	HR:6035:F	10	Modbus2	HR:6035:F	10
8	M1_f	sagedus	M1	IR:70:F							
9	M1_Uab	faasipinge AB	M1	IR:200:F		ModBus	HR:6037:F	0.05	Modbus2	HR:6037:F	0.05
0	M1_Ubc	faasipinge BC	M1	IR:202:F		ModBus	HR:6039:F	0.05	Modbus2	HR:6039:F	0.05
1	M1_Uca	faasipinge CA	M1	IR:204:F		ModBus	HR:6041:F	0.05	Modbus2	HR:6041:F	0.05
2	M2_Ua	faasipinge A	M2	IR:0:F		ModBus	HR:6043:F	0.05	Modbus2	HR:6043:F	0.05
3	M2_Ub	faasipinge B	M2	IR:2:F		ModBus	HR:6045:F	0.05	Modbus2	HR:6045:F	0.05
4	M2_Uc	faasipinge c	M2	IR:4:F		ModBus	HR:6047:F	0.05	Modbus2	HR:6047:F	0.05
5	M2_ILa	faasivoolA	M2	IR:6:F		ModBus	HR:6049:F	1	Modbus2	HR:6049:F	1
6	M2_ILb	faasivool B	M2	IR:8:F		ModBus	HR:6051:F	1	Modbus2	HR:6051:F	1
37	M2_ILc	faasivool C	M2	IR:10:F		ModBus	HR:6053:F	1	Modbus2	HR:6053:F	1
8	M2_P	aktiivvoimsus	M2	IR:52:F		ModBus	HR:6055:F	10	Modbus2	HR:6055:F	10
9	M2_Q	reaktiivvoimsus	M2	IR:60:F		ModBus	HR:6057:F	10	Modbus2	HR:6057:F	10
0	M2_f	sagedus	M2	IR:70:F							
1	M2_Uab	faasipinge AB	M2	IR:200:F		ModBus	HR:6059:F	0.05	Modbus2	HR:6059:F	0.05
2	M2 Ubc	faasipinge BC	M2	IR:202:F		ModBus	HR:6061:F	0.05	Modbus2	HR:6061:F	0.05
3	M2 Uca	faasipinge CA	M2	IR:204:F		ModBus	HR:6063:F	0.05	Modbus2	HR:6063:F	0.05

Lisa 29. Easergy Builder mõõtmised (kuvatõmmis programmist)

2 C		Synchromzauc	RE									
Stat	us Command Analog	Setpoint db	NET									
	Name	Source	×	AND	~	Destination	~ ~ ~ % ~] Error rows				
	Name	Description	Source1 Device	Source1 Coordinates	Source1 Vmask	Destination1 Device	Destination1 Coordinates	Destination2 Device	Destination2 Coordinates	Destination3 Device	Destination3 Coordinates	Destination4 Device
	RTU_KL_Valjas	DI_ISIM 1	claq	1000020000		Events	RTU_KL_Valjas:SPS	ModBus	HR:1001	Modbus2	HR:1001	
	Switchi_rike	DI_ISIM 2	claq	1000020001		Events	Switchi_rike:SPS	ModBus	HR:1002	Modbus2	HR:1002	
	RESERV1_1	DI_ISIM 3	claq	1000020002								
	RESERV1_2	DI_ISIM 4	claq	1000020003		2						
	ls_KL_Valjas	DI_ISIM_1	clag	1001020000		Events	ls_KL_Valjas:SPS	ModBus	HR:1003	Modbus2	HR:1003	
	ls_Kaitserelee_Rike	DI_ISIM_2	claq	1001020001		Events	Is_Kaitserelee_Rike:SPS	ModBus	HR:1004	Modbus2	HR:1004	
	Ils_KL_Valjas	DI_ISIM_3	clag	1001020002		Events	lis_KL_Valjas:SPS	ModBus	HR:1005	Modbus2	HR:1005	
	IIs_Kaitserelee_Rike	DLISIM_4	claq	1001020003		Events	lis_Kaitserelee_Rike:SPS	ModBus	HR:1006	Modbus2	HR:1006	
	DC_Keskus_Aku_Toitel	DI_ISIM_5	clag	1001020004		Events	DC_Keskus_Aku_Toitel:SPS	ModBus	HR:1007	Modbus2	HR:1007	
	DC_Keskus_Maa	DI_ISIM_6	claq	1001020005		Events	DC_Keskus_Maa:SPS	ModBus	HR:1008	Modbus2	HR:1008	
i.	DC_Keskus_KL_Valjas	DI_ISIM_7	claq	1001020006		Events	DC_Keskus_KL_Valjas:SPS	ModBus	HR:1009	Modbus2	HR:1009	
	DC_Keskus_Viga	DI_ISIM_8	claq	1001020007		Events	DC_Keskus_Viga:SPS	ModBus	HR:1010	Modbus2	HR:1010	
2	DC_Keskus_Aku_UleAla_Pinge	DI_ISIM_9	clag	1001020008		Events	DC_Keskus_Aku_UleAla_Pinge:SPS	ModBus	HR:1011	Modbus2	HR:1011	
5	MPJS_Terminali_Rike	DI_ISIM_10	clag	1001020009		Events	MPJS_Terminali_Rike:SPS	ModBus	HR:1012	Modbus2	HR:1012	
	MPJS_Terminali_KL_Valjas	DI_ISIM_11	claq	1001020010		Events	MPJS_Terminali_KL_Valjas:SPS	ModBus	HR:1013	Modbus2	HR:1013	
	RESERV2_1	DI_ISIM_12	claq	1001020011		2						
6	RESERV2_2	DI_ISIM_13	claq	1001020012								
	RESERV2_3	DI_ISIM_14	clag	1001020013								
3	RESERV2_4	DI_ISIM_15	claq	1001020014								
6	RESERV2_5	DUISIM_16	claq	1001020015		- 2				-		
	D001_COMM_DIAG	COMM_DIAG	claq	1001000000								
	D001_HW_DIAG	HW_DIAG	claq	1001000001								
2	WARN_BAT	Low battery war	supervision	WARN_BAT				1				
1	FAIL_SYNC1	Fail in primary sy	supervision	FAIL_SYNC1		Events	FAIL_SYNC1:TIME					
1	FAIL_SYNC2	Fail in secondary	supervision	FAIL_SYNC2		Events	FAIL_SYNC2:TIME					
	FAIL_CONF	Fail in the config	supervision	FAIL_CONF								
5	FAIL_RTU	FAIL_CONF is 1	supervision	FAIL_RTU								
7	DOING WELL	Signal for indicati.				supervision	DOING WELL					
3						Events	Initial Timeout SPS					

Lisa 30. Easergy Builder signaalid valmis (kuvatõmmis programmist)

Lisa 31. Tavakontroll

ES ELTECH Madalpingelise a	paraadikooste tavakontroll	Vers: 13.11. Leh
Toode on testitud vastavalt standardile EVS-EN (51439-1:2012 punktile 11. Tavakontroll	
Tellija:	Valmistaja: Eltech Solutions OO	
Objekt: Ülemiste katlamaja alajaama rek.	Tellimuse nr: SO1095-09	
Toode: Spacial 3D. AK		
Toote lisaandmed (nimipinge, nimivool, kaitser	aste): Un=230/400 VAC, In=5 A, IP44, IK1	0
Nupperi <u>20,22,2022</u>	Pole antud koostel rak	Korras X kendatav -
1. Visuaalne kontroll	6. Dielektrilised omadused	
Ömbriste kaitseaste IP	L1+L2+L3+(N) - 0mbris (PE/P	EN)
Õhk- ja roomevahemikud	L1 - L2+L3+(N)+ümbris (PE/P	EN)
Kaitse elektrilöögi eest ja kaitseahela pidevus	L2 – L1+L3+(N)+0mbris (PE/P)	EN) -
Kaitsedetailid (katted)	L3 – L1+L2+(N)+0mbris (PE/P)	EN)
2. Sisseehitatud komponentide kompleksus	Abiahelad - ümbris (PE/PEN)	
Aparaadid	7. Juhtmete ühendamine,	
Tähistused ja markeeringud	toimimisomadused ja funktsioon	nid
3. Sisemised elektriahelad ja ühendused	Faaside järjestus	\times
Liited/ ühendused	➤ Juht- ja abipinged	-
Voolujuhtide ristlõiked	X Juhtahelad	\times
Kaitsejuhtide PE/PEN ristlöiked	Signalisatsioon	-
4. Välisjuhtide klemmid	Blokeeringud	
Koguse, tüübi ja märgistuse vastavus	Seadmed	
5. Mehaaniline toimivus	Mööteriistad	· · ·
Koormus- ja kaitselülitid	Mõõtetrafod ja -ahelad	\times
Juhtnupud ja -võtmed	Sätted	-
Uksed ja lukud	×	
Blokeeringud		
Kaitseseadmed		

MÄRKUSED:

Lisa 32. Fiidriterminali testraport

Davlasy	Destanti		. /.					
S/N:	EB22323001	elay (P3U30) 9	v	/ID:	P3U30-0338	30	L14	
Program version: HW version: Order code: Auxiliary power: Nominal inputs currer Nominal inputs voltag Frequency:	nt: e:	30.205 1.6 5BAA2BDAA 48 - 230 Vac/do In: 1/5A Io1n: 1 100/110V 50/60 Hz	: 0.2/1A					
Auxiliary power:		Voltage	Current		Power (< 15	5W)		-
Communication:	Local (fr	110 Vd ont) 🔽	с 60] ОК	mA	6.60 W	I		
Digital inputs: Output relays: Insulation Test:	Kemote	도 도 도 도 도 도	ТОК (ОК (ОК (ОК (Conne Conne IEC 60	ntenace t (MAC 001AD3 ctors: X3:3-6,X4 ctors: X3:7-20,X 0255-27 2kV, 50	0262F7) I:1-14,X5:1-8) (5:9-14) 0Hz)		
Meas. Accuracy:	CT = 50 CTo = 50 VT1000/	00 A / 5 A (In = 5 00 A / 5 A (In = 5 / 100V f=50Hz	A) A) or 100 A/1	1A (I	n = 1 A)			
Current channels:		Channel	Supply valu	ue	Measured	Error	Tolerance	T
	0,1 x In	IL1 IL2 II.3	0.4999	A	500 A 500 A	0.02 %	±2,5%	Ē
	1,0 x In	IL1 IL2	4.9988	A	4998 A 4998 A	-0.02 % -0.02 %	±0,4%	Ē
	4,0 x In	IL1 IL2 IL3	20.0002	A	20037 A 20041 A 20029 A	0.18 %	±2,5%	E
Residual current:		Channel	Supply years		Manage	5.14 %		
	0.01 x In	In = 0.2 A	0.0020	A	0.20 A	0.00 %	+2052	÷
	0.10 x In	In = 0,2 A	0.0201	A	2.00 A	-0.50 %	±2%	H
	1.00 x In	In = 0,2 A	0.1998	A	20 A	-0.05 %	±0,3%	F
	0,01 x In	In = 1 A	0.0102	A	1.02 A	0.00 %	±20%	
	0.10 x In 1.00 x In	In = 1 A In = 1 A	0.0999	A	9.99 A 100 A	-0.15 %	±2% ±0.3%	F
Voltage chappels:		1.01	1					_
voltage channels:		Channel	Supply valu	ie	Measured	Error	Tolerance	Ľ
mode: JLN/LNy	0,02 x Un	ULI	2.00	V	20.0 V	-0.04 %	-	Ľ
	1	012	2.00	V	20.0 V	-0.07 %	1250/	H
		ULIV	2.00	÷ +	20.0 V	-0.07 %	\$25%	H
	0,1 x Un	UL1	10.00	v l	100.0 V	-0.02 %		⊢
		UL2	10.00	v l	100.0 V	-0.01 %		F
	1	UL3	10.00	v	100.0 V	-0.01 %	±2.5%	F
		UL1y	10.00	v	100.0 V	-0.01 %		F
		111.4	100.00	V/	1000.0 V	0.00 %		r
	1,00 x Un	ULI	100.00	v	1000.0 0	0.00 /2		
	1,00 x Un	UL2	100.00	v	1000.0 V	0.00 %		h
	1,00 x Un	UL2 UL3	100.00	v v	1000.0 V 1000.0 V	0.00 %	±0,4%	

Schneider

Lisa 33. Kaitsesätete arvutus

Kaitsesätete arvutus ja selektiivsuskontroll

1. Algandmed

Kaitsesätete arvutamise põhjuseks on Ülemiste katlamaja 6 kV jaotla rekonstrueerimine. Sellega vahetatakse välja jaotuseeade ning kaitsereleed, tehakse ümberehitus toidetavas võrgus. Ülemiste katlamaja alajaam on kahesektsiooniline ning toidetav Ülemiste AJ fiidritest F651 ja F646. Toitepinge on 6.3 kV.

Lühisvoolud Ülemiste AJ 6 kV lattidel: Isc = 9.07 kA, min Isc = 8.56 kA.

Lühisvoolud Ülemiste katlamaja 6 kV lattidel: Isc = 8.10 kA, min Isc = 7.69 kA.

Ülemiste KM	R	×	z	lsc [kA]
Max	0.06	0.44	0.45	8.10
Min	0.07	0.47	0.47	7.69

Arvutustes on kasutatud oomilisi takistusi. Lihtsustusena ei arvestata asünkroonmootorite lühisvoolukomponenti kogulühisvoolus.

Arvutustes kasutusel olevad algandmed on saadud võrguettevõtte (Elektrilevi OÜ) infosüsteemidest, seadmete tootelehtedelt ning andmesiltidelt ja töö tellijalt.

2. L11, Trafo T3

Nimivõimsus: 2000 kVa uk%=5.95% Nimipinged: 6300/690 V Relee: Schneider Electric P3U30 Voolutrafod: 100-200/1A Kaabilvoolutrafo: 100/1A

Liigvoolukaitse kiirem aste (3I>>>);

Trafo takistus 6.3 kV poolel: $z_{T2000} \approx u_{k\%} \cdot \frac{U_n^2}{S_{n7}} = 0.0595 * \frac{6.3^2}{2.0} = 1.18 \,\Omega$

Maksimaaline lühisvool trafo taga (6.3 kV poolt vaadelduna): $I_{sc max} = \frac{U_8}{\sqrt{3}(x_{sat} + x_{Troot})} = \frac{6.3}{\sqrt{3} 1.63} = 2.24 kA$

Minimaalne lühisvool trafo taga (6.3 kV poolt vaadelduna):: $I_{sc\,min} = \frac{U_n}{\sqrt{2} \cdot (x_{sc} + x_{From})} = \frac{6.3}{\sqrt{2} \cdot 1.65} = 2.20 \ kA$

Liigvoolukaitse kiirema astme välistus trafo 0,69 lühisvoolust: $I_{3>>} \ge 1,05 \cdot 2,24 = 2,35$ kA

Kaitse viide valitakse minimaalne võimalik, s.o 30 ms (kõver: DT) Valitud säte 3I>>>: 2400 A viitega DT 30 ms (12In//T, voolutrafo 200/1)

Kaitse tundlikkuse kontroll (trafo esine lühisvool): $k = \frac{0.877690}{2400} = 2.8 > 1.5$

Liigvoolukaitse viitega aste (3I>) Trafo 2000 kVA nimivool: $I_{nT2000} = 183, 3 A$

Lisa 34. Digiallkirjastatud protokollid

Ümbriku sisu	13 🛞	D Ümbriku allkirjad						
Masina L02 Releekaitse protokoll 11.01.23.pdf	۲	ERKO TARGAMAA - Allkiri on kehtiv 39905020239 - Allkirjastatud 07. veebruar 2023 kell 11:04	۲					
Masina L03 Releekaitse protokoll 08.12.22.pdf	۲							
Masina L05 Releekaitse protokoll 08.12.22.pdf	۲							
Masina L06 Releekaitse protokoll 11.01.23.pdf	۲							
Masina L07 Releekaitse protokoll 07.12.22.pdf	۲							
Masina L08 Releekaitse protokoli 11.01.23.pdf	۲							
Masina L09 Releekaitse protokoll 07.12.22.pdf	$^{()}$							
Masina L10 Releekaitse protokoll 11.01.23.pdf	۲							
Masina L11 Releekaitse protokoll 07.12.22.pdf	۲							
Masina L12 Releekaitse protokoll 11.01.23.pdf	\circledast							
Masina L13 Releekaitse protokoll 07.12.22.pdf	$^{\odot}$							
Masina L14 Releekaitse protokoll 11.01.23.pdf	۲							
Masina L01 Releekaitse protokoll 08.12.22.pdf	$^{()}$							

Lisa 35. Lühijuhend kaitsereleele P3U

