TALLINNA .
TEHNIKAKORGKOOL

»

Edgar Kurm

Python Usage for MIR Robot Automation
Graduate Work

Institute of technology

Group: RO2019
Supervisor: Villu L6hmus

Tallinn 2023

TALLINNA .
TEHNIKAKORGKOOL

»

Edgar Kurm

Pythoni kasutamine MIR robotite

automatiseerimiseks
Lputdd

Tehnikainstituut

Opperiihm: RO2019
Juhendaja: Villu L6hmus

Tallinn 2023

AUTORI DEKLARATSIOON JA LIHTLITSENT

Mina, Edgar Kurm, tGendan, et 18put6d on minu kirjutatud. T66 koostamisel kasutatud teiste
autorite, sh juhendaja teostele on viidatud digusparaselt.
Kdik isiklikud ja varalised autoridigused kaesoleva 16putdd osas kuuluvad autorile

ainuisikuliselt ning need on kaitstud autoridiguse seadusega.

Juhendaja (nimi, allkiri) Villu Lohmus, allkirjastatud digitaalselt

Lihtlitsents 16put6d reprodutseerimiseks ja 16putd66 Uldsusele kéattesaadavaks
tegemiseks

Mina, Edgar Kurm
(autori nimi)
stinnikuupdev: 28.02.1999

annan Tallinna Tehnikakdrgkoolile (edaspidi kdrgkool) tasuta loa (lihtlitsentsi) enda loodud teose

Pythoni kasutamine MIR robotite automatiseerimiseks
(I6putdo pealkiri)

1. elektroonseks avaldamiseks kérgkooli repositooriumi kaudu;

2. kui 16puttd avaldamisele on instituudi direktori korraldusega kehtestatud téhtajaline
piirang, 16putdd avaldada parast piirangu Idppemist.
Olen teadlik, et nimetatud digused jadvad alles ka autorile ja kinnitan, et:

1. lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete
kaitse seadusest tulenevaid ega muid digusi;

2. PDF-failina esitatud t60 vastab taielikult kirjalikult esitatud toole.

Tallinnas, allkirjastatud digitaalselt.

TABLE OF CONTENTS

AUTORI DEKLARATSIOON JA LIHTLITSENT ..ottt 3
TABLE OF CONTENTS ...ttt sttt sttt ettt ne et e s eneanens 4
ABBREVIATIONS ...ttt a e et e e et e e an b e e e sa b e e e snb e e e nnaeeesneeeaseeeanneas 6
INTRODUGCTIONeiiitite ittt e et e et e e st e e et e e aabe e e snb e e e ssteeessaeeessbeeesseeeasnaeaseeeas 7
1. ACTUALITY OF THE PROBLEM ...ttt 8
R @]2 N USSR 9
K TR |V | | SRS 10
I o T I Y 4 SRS 12
5. PROGRAMMING LANGUAGE ...ttt 14
5.1, General aboUt PYLNONcvoiiiiiei et nne e 14
5.2. Difference between high level language and low levelcccoooeiiiiicc e, 15
5.3, PYLNON TEAIUIES ...t bbbt 16
5.4, PYLhON WEAKNESSESc.viviiiiiiiiiiiieiei ettt bbbt 17
5.5, PIP IN PYINON oottt reenne e 18
B. PYTHON SCRIPT ..ottt ettt bbbt ne et st rene 19
0.1, IMIPOITS et 19
6.2. REST API BASIC SBIUP ...c.vitiitiiiiiiieiieiei ettt bbbttt 20
6.2.1. REST API AULNOMZALION.c.oiiiiiiiieie e 20

TG TR [010 LU £SO TTPRTUPRUPRPS 21
6.4. MIiSSION CYCIE CONTIOL......ccuiiiiiiiiiiiie e 22
8.5, FHIEIING. ..ot 23
B.6. IMAIN PAIT .. .ottt bbbt 24
T ot o 1= [] [TV [T S T PS 24
6.8, PYLNON HIDIAITES ..ot 25
B.8.1. REQUESES. ...ttt 25
B.8.2. DRIAY oo e 25
CIR S G TN 1< o] o DTSR U PSP OPOTRTPP 25
6.8.4. MIS_MES TUNCLIONoviiiiiiie ittt te e sraenaeeneenneas 25
6.8.5. MaIN_aPI TUNCHION ..ottt bbb 26
6.8.6. LIMEI FUNCLION ...t et nreas 28

7. AUTOMATING SCRIPT ..ottt sttt ettt b se et nn e ne e 29

7.1, Python SChedule TIDrary ... 29

A O (0]] - o ISP U TP PRPRRRN 29

7.3, WINAOWS TaSK SCNEAUIETocviiiiiie et 31

7.4. Best way t0 SChedUle taSKSccooiiiie e 33
8. COMPETITORS ...ttt ettt s et e bt e bt e e e st e be st et eneebe e e erene 35
0. FUTURE ...ttt ettt bbbt s et e et e b et b e st et e et et e st e be st e e ere e 36
SUMMARY ettt e et e e a bt et aR bt e et e aR bt e e rte e e naa e e e nreearaaeanees 38
KKOKKUVOTE ...ttt 39
SOURCES. ..ottt s bt e Rt b et e st ebe et et e st e b e s b et e R e et e b e st e be et et e neebe e e e ene e 41
LIST OF ATTACHMENTS .. .ottt sttt se et st ene st s eneene s 42
ATTACHMENTS e e e e et e et e st e e st e e arbe e e asteeeaseeeesaaeeeanseeeseeeaneeeanns 43

ABBREVIATIONS

N o a k~ wDd e

MIR - Mobile Industrial Robot

REST - Representational State Transfer
API - Application Programming Interface
JSON - JavaScript Object Notation

AMR — Autonomous Mobile Robot

ROS — Robot Operating System

GUI — Graphical User Interface

INTRODUCTION

Company where | did my diploma practice is called DemekCNC OU. Demek CNC OU supplies metal
machine tools, accessories and equipment. [2] They offer automation solutions, repair and
maintenance services for metal machine tools. [2] They offer a complete solution that includes the
selection of equipment necessary for production, its installation and maintenance, technology
development, training, programming and automation of production.[2] Also they are distributors of
Universal Robots and Mobile Industrial Robots. By the time | came to them, they were working on a
problem with MIR robot charging mission automation and they gave this problem to me to solve it.
The problem is that the customer want to put MIR robot charging at the exact time, because they all
go for lunch at 12:00 am, which means there is nobody in the workspace at this time. MIR robot
program is running in a loop, it means that 1 mission is repeating over and over again. MIR by itself
is a collaborative mobile industrial robot, it should work in cooperation with humans and because of
that it has easy interface for regular users, however it is not possible to solve our problem with MIR
interface without buying additional software. This functionality is possible to get by the MIR
manufacturer's software license, called MIR Fleet, but for Estonian business, the cost of the license
and the available functionality are too expensive to pay off economically. DemekCNC asked to look
for alternative solution. As | know that MIR platform supports REST API, | decided to use it to
remotely take control over MIR robot to add or delete missions. To use REST API there is a script
needed written on a programming language. There are multiple programming languages that support
REST API, for example: Python, C# , Ruby, Java, JavaScript, PHP. | decided to use Python over
other languages. There are multiple reasons, first of all Python have one of the biggest communities,
that means that it is easier to search for information, as well as it supports a lot of different libraries.
Secondly, Python syntax is shorter than in other languages, which lets us make our script more
compact, it leads our script to be easier for other people to understand. And the most important reason
for choosing Python, is portability. Python programms can be easily tranfered from one system to
another. For example, i can write code using Windows system, then save it on usb drive, go to another

system, for example Linux and it will run properly without any changes in code.

1. ACTUALITY OF THE PROBLEM

The actuality of the problem is very high. DemekCNC have multiple clients that want to solve same

problem of scheduling their robots missions without buying MIR Fleet.

Overall, in the Baltics there is 2 clients that want such solution. The biggest problem for the clients
and for the Demek as MIR robots distributors is the lack of MIR robot integrators in the Baltic States.
General talking integrators are companies that are specialist in MIR robots and that are able to make

different custom solutions depending on a customer needs.

The lack of integrators makes my solution very reliable in Baltics. Also MIR robots REST API and
Python combination could be used not only for adding scheduling functionality but also for other
functionalities and robot automation in general, which could make my solution even more reliable

and make new clients for the company.

2. ROBOT

Robot by itself is very wide termin and usually people imagine totally wrong things using termin
robot. Mostly people are imaging robots in the way how they have seen them in the films, which is

human like looking machines.
So what is robot?

A device can be called a robot if it can perceive and understand the world around it, as well as

influence it.
There is 2 types of robots in general:
1) Industrial

Industrial robots purpose is to help people automate production. Industrial robots have 2 main sub-
types which are: Robot Manipulators and Autonomous Mobile Robots or shortly AMRs. Robot
Manipulators are made in the similar way to humans hand and is used in the most cases on the
industrial production line. Manipulators are doing such things as: welding, screwing, palletizing and
etc... The use case of AMRs is transportation of a product from one place to another, usually AMRs

are working in the collaboration with Robot Manipulators
2) Service

Service robots are made to help people with difficult and routine tasks. Some examples of a service

robots are: Robot vacuum cleaner and robot lawn mover

3. MIR

MIR is Mobile Industrial Robot, those type of robots are also called autonomous mobile robots or
AMRs. MIR have 4 different mobile robot models :

1) MIR100 [3]
2) MIR250 [3]
3) MIR600 [3]
4) MIR1350 [3]

The main difference between 4 robot models are maximum payload and movement speed.
The number after MIR name tells us the maximum payload of a robot.

MIR100 have the maximum payload of 100 kg [3]

MIR250 have the maximum payload of 250kg [3]

MIRG600 have the maximum payload of 600kg [3]

And MIR1350 have the maximum payload of 1350kg [3]

For my work | have used MIR100, but everything | have done can be used on all MIR robots, because

they all share same software.

_ i
= 0
\"tw <
Picture 1. MIR100 [3] Picture 2. MIR250 [3]

Picture 3. MIR600 [3] Picture 4. MIR1350 [3]

10

The most popular model of a MIR in Estonia is a MIR250. Because it have one of the best money to
profit ratio. In depth comparison shows us that MIR250 have same dimensions with MIR100 (890mm
x 580), but higher payload(250kg for MIR250 vs 100kg for MIR100), higher move speed (2.0 m/s
for MIR250 and 1.5 m/s for MIR100) as well as higher run time (13 hours for MIR250 and 10 hours
for MIR100) [3]

11

4. REST API

REST API , it is usually called Restfull APl is Representational State Transfer Application
Programming Interface. API is used for the communication between devices through the Internet
connection. And REST is a set of rules that applies to API. Those rules were invented by Roy Fielding
So general talking , REST is the way how API is created and how it is interacting with the clients
using http protocol. So it is architectural style for client and server interaction. In REST client is
separated from the server, as well as server is not recording the state of the client, so client is sending
to the server only information required to make request and nothing more. The biggest advantage of
REST is a single interface for all APIs using this architectural style. That means that all operation
over an object should be done using url corresponding to this object. For example if | have object
called Missions, all operation with missions should be done using missions url. There is 4 main

methods used for the object operation, which are:

1) Delete

This method is used if we need to remove object

2) Get

This method is used for asking some information about object

3) Post

This method is used for adding object

4) Put

This method is used if we need to update information about object
There is also 5th method exicts in REST, which is called PATCH.
PATCH method is similar to PUT

The main difference between PATCH AND PUT is that PUT method update entire resource and
PATCH gives opportunity to update it partially, but in MIR robots REST API, PATCH is not

used.

There is another advantage of using REST rules for APIs, which is standardized responses from

the server. As we know that all APl with REST rules have same interface, that means that we can

12

understand very well what kind of reply we are getting from server. Is everything alright or we
have some kind of problem with response. We are getting numerical output in console, for
example 204 for delete request, which means that The element has been deleted successfully [1]
or 400, which means: Invalid filters or Invalid JSON or Argument error or Missing content type
application/json on the header or Bad request or No fields [1] . This makes troubleshoting much

easier and faster.
Responses in REST API could be in such formats as:

1) JSON
2) XML
3) HTML
4) Image

But the most popular format for the REST API responses nowadays is JSON.

Send Request

Send Response

Picture 5. REST API Scheme[4]

13

5. PROGRAMMING LANGUAGE

5.1. General about Python

Python is a high-level general-purpose programming language which is nowadays very popular,
especially in robotics engineering. Python have different versions, the latest version is Python3.
Python is considered as one of the best languages for the beginners. Python is used in a lot of different

fields but in robotics the main use cases are:
1) Machine Learning
2) Machine Vision
3) Data Collection
4) Hardware Control
5) Working with ROS
Another fields where Python is very popular are:
1) Data Science

Python is very powerful in collecting information, analyzing information and building different types
of models, similar to Matlab, but the biggest advantage of Python over Matlab, is that Matlab requires
a paid license, while Python is totally free to use.

2) Web Programming

In web service, Python with the newest updates could be used in both Frontend and Backend
programming. Python is one of the most popular solutions for programming a backend parts of a web
service, because of such Python Frameworks as Django and Flask.

14

5.2. Difference between high level language and low level

High Level Language

1. Itis programmer friendly language. [4]

High level language is less memory efficient

2. [4]

3. Itis easy to understand for human. [4]

4. Debugging is easy. [4]

5. Itis simple to maintain. [4]

6. Itis portable. [4]

7. It canrun on any platform. [4]

It needs compiler or interpreter

8. translation [4]

Table 1. High level language vs low level [4]

Low Level Language

It is a machine friendly language. [4]

Low level languageis high memory
efficient. [4]

It is tough to understand for human. [4]

Debugging is complex comparatively. [4]

It is complex to maintain comparatively. [4]

It is non-portable. [4]

It is machine-dependent. [4]

It needs assembler for translation. [4]

15

5.3. Python features

There is multiple features of the Python language that makes it so popular:

1)

2)

3)

4)

5)

6)

First of all Python is easy both to read and write code. Code written on the python language
is shorter, comparing to other languages, which makes it much more compact and the syntax

of the Python is straightforward and looks more similar to the human language.

Another feature of Python is its libraries. Python have a lot of standard libraries that come
already preinstalled with Python and there is even more libraries that you can install by

yourself

Being an high level language is one of the features of Python as well, as we know from the

Table 1 from the the topic difference between high level language and low level

One of the biggest strengths of Python is its portability. Python code can be executed on all
popular computer systems without require of changing anything in the code. That means that
you can write code using Windows system and then save it on usb drive for example and

successfully run it on Linux system without making any changes.

Dynamical memory allocation is very useful thing as well and also one of the reasons why
Python language is so good for beginners. But this is not useful only for beginners, but for a
professional programmers as well, because memory allocation is relatively hard thing and

takes programmers time to do it.

Another very usefull Python feature is GUI support. As Python have very large amount of
libraries, it is possible to program graphical user interface using Python. There is 2 main
libraries for GUI in Python, both should be installed, as they are not a part of the standard
Python libraries. Those libraries are: Tkinter and PyQt (latest version PyQt5). Both libraries
could be easily installed by using PIP and the syntax is following: pip install tkinter and pip
install pyqgt5. PyQt5 is the most popular library for GUI programming and there is reason why
it is so. With PyQt5 it is possible to install thing called PyQt Designer, which is Graphical
GUI Designer, where you have different boxes, buttons etc... and you can move it as you
want and place as you want using graphical interface. When you finish creating your GUI
with PyQt Designer you can translate it to the Python language and use it inside your code.

To install PyQt Designer there is such command as pip install pyqt5-tools

16

@ 2 Cesigne - =] x
Mle [T Vies Selings Wrdos (i

- LY W R R

Object Inspectar 5 %

Dot Oass

~ B Delcg DOwicg
bulianla OFlegTullor o
IinEdit OLreedit
tsrFidin CfoatFoln

i Tree Widget Penpery Fiter L
) Tt idge e
v — ,mcoulnms P
ﬁ ;:,UI,I m oot 81265 baiio Fragety Velue
B cotu [0 N othect
B T Wi b SIS ohjectame Cisky
W Stk iyt I e .
Pl rame S S S S S S s
[wager » 159,90 400 % 3001
LB WDI Are IFretermed, Frererred, b, U
I Gockwidast 7 Ned

o TITES 2 16TITENS

oxd
nea

]
A (M5 shel g 2, 8]
G Amoe

L

e i Qs P 0O CODORAESEO ~28es8smexn e
Picture 6. PyQt designer (autors picture)

7) Another feature of Python is that it is object-oriented language. Object-oriented programming
is the set of rules of how code needs to be written. The general principle is that programming
is presented in the form of interaction between objects. There is 4 main elements in object-
oriented programming, which are: classes, objects, methods and attributes.

8) Python is dynamically typed programming language and that means that it is not needed to
specify type of the variable during the coding process. Python language is specifying variable
types automatically when we press run button.

5.4. Python weaknesses

Everything in this world have its own strength and weaknesses, Python is not an exception. There is
2 main weakness of the Python language, both comes from its strengths, having dynamical memory
allocation as well as being dynamically typed language, all those leads to being slow language in

comparison to other programming languages as well as being not memory efficient.

17

5.5. PIP in Python

PIP stands for Prefered Installer Program and is used to install packages in Python. The overall syntax
of pip is pip install + name of the package. For example pip install Schedule. Newest Python versions
comes with the build in opportunity to install pip on your device, you just need to make sure you are

making custom installation and put check mark in the right box.

& Python 3.11.2 (64-bit) Setup _ X
) Optional Features
Documentation
Installs the Python documentation files

@ pip

istalls pip, which can download and install other Python packages.

@ td/tk and IDLE

istalls tkinter and the IDLE development environment.

Python test suite

Installs the standard library test suite.

python

Back Next Cancel

windows

Picture 7. Pip installation (autors picture)

18

6. PYTHON SCRIPT

Scripts consists out of 7 parts, which are:
1) Imports
2) Basic Setup
3) Inputs
4) Mission Cycle Control
5) Filtering
6) Main Part

7) Scheduling
6.1. Imports

This is the part where i am importing Python libraries , to use them further in my code.

requests
time sleep
schedule

Json

time

Picture 8. Library Imports (autors picture)

19

6.2. REST API Basic setup
URI scheme:[1]

Host : mir.com/api [1]

BasePath : /v2.0.0 [1]

Schemes : HTTP [1]

Consumes * application/json [1]

Produces ¢ application/json[1]

headers = {}

headers[

Picture 9. Basic setup (autors picture)
6.2.1. REST API Authorization

To authenticate in the API a basic autentication has to be included in the header. [1] It consists in a
string that is base64 encoded and it is formed by the username followed by a colon and the password
sha-256 encoded. [1] Ex: BASE64(:SHA-256()) [1]

Picture 10. Authorization (autors picture)

20

This is the unique key that gives permission to communicate with robot. To get autorization key it is
needed to go to the MIR soft, which is available by typing mir.com in web browser, if we are using
mir own network, or by typing robots ip adress in to the browser search bar if we are connected to

another router.
6.3. Inputs

This is the part that consists of 4 variables that are used to get inputs from the user and store them for
the future use in code. First variable is first_position is asking user to enter first position in the mission
cycle. Second one is create_mission_1 which is used to get users charging mission name. Third one
is create_mission_2 which is used to get users regular mission name. The last variable is scheduler

and it asks user to enter time, when user want to execute code.

first position =
create mission 1

create mission 2
scheduler =
Picture 11. Inputs (autors picture)

21

6.4. Mission Cycle Control

This part is used to control if robot have done mission cycle to the end or not. As i know that clients
regular robots mission is looped, which means that 1 mission is repeating endlessly. And mission that
we add to the robots queue is going to the bottom of the queue. So the only way to replace looped
mission is to remove all missions. If there is product on the robot, that robot is transporting to the
destination area and we remove mission in the middle of the cycle and simply put charging mission
instead, there is very high risk that the product will not be transported to the destination area and robot
will go to the charging station with product on the top of it, calling regular mission back after charging
with the product from the enterupted cycle being on the top of the robot, gives us very high risk to
damage the product, because robot will start its movement from the first action in the mission. To
prevent this i have created function mis_mes. This function is checking when the robot is starting

moving from the last position to the first one, which will designed that mission cycle have been done.

mis mes () :
quated =

=headers)

text list = json.loads(mission message.content)
(text list)

text list]] == quated:

Picture 12. Mission Cycle Control (autors picture)

22

6.5. Filtering

In this part i have created filter that gives oppurtunity to call robots missions using their names instead
of guids. It is the part of the main_api function. This function consists of 2 parts: 1) Filtering and
Main Part. Filtering is required to make code usage easier to the user. Because when someone is

working robots GUI , mission names are used instead of mission ids.

main api () :

uests.get (host +
text)

get missions = req
(get missions.

list missions = json.loads(get missions.content)

(list missions)
dict missions = {}

mission list missions:
dict missions[mission]|]] = mission
(dict missions)
=dict missions .keys|()

e mission 1]

e mission 2]

(guid 2)
Picture 13. Filtering Part (autors picture)

23

6.6. Main Part

Main Part is the second part of the main_api function and it does 4 consecutive actions
1) Delete all mission in queue
2) Call charging mission
3) Delete charging mission after time

4) Call regular mission back to the robot

=headers)

=mission id 1

(charging missi

e (host +
s)

ion id 1
(delete charging)

ssion id 2
regular mission = requests
=mission id 2
(regular mission)

Picture 14. Main Part (autors picture)

6.7. Scheduling

This part is made to execute code at the entered by user time and is using timer function to do it.

timer () :
mis mes ()
main_ api ()

schedule.every () .day.at (scheduler) .do (timer)

schedule.run pending/()
tm.sleep (1)

Picture 15. Scheduling part (autors picture)

24

6.8. Python libraries

Library in Python is a premade template that you can fill with your data and get the result. It is made
to make coding faster and more convenient, because you do not need to write same code part in every

new file, instead you can just import library.
6.8.1. Requests

Request is a library is designed to make http requests to a specific url, which is exactly how REST
API works, so it makes request library a perfect choice for using it for the operation on the obects
using REST API. Request is not a standard library and need to be installed. The best way to do it is
using pip. Pip install request is the syntax for installing this library.

6.8.2. Delay

In 1 part of my code | need my code to wait some time before continuing. This is the part after adding
charging mission to the robots queue, because we want to keep charging mission for 1 hour, as we
know that at 12:00 starts lunch time in the clients workhouse and lunch is 1 hour long. For this | am
importing sleep module from time library and using sleep after calling charging mission. The syntax
is sleep(number in seconds), so we just need to add our number inside the brackets, how long we want
code to sleep before in continue. Time library is standard Python library and doesn’t need to be

installed before importing it in the code.
6.8.3. Json

JSON is JavaScript Object Notation. To make operations over json objects there is json library in
Python, which is standard library and can be imported without installations, cause it comes

preinstalled with the Python.
6.8.4. mis_mes function

First variable inside mis_mes function is quated, it is translating user input that we got from the Inputs
part of the code, which is saved in first_position variable, to the form that robot will be able to read.
After quated variable i have While True loop, this loop will endlessly repeat code inside this loop
until it will reach true statement. First variable inside While True loop is mission_message, that is

sending get request to the robot with the host + status url. After that we need to save our response

25

from robot in another variable, which is text_list in my case and then we need to translate response
from robot to python language, because by default python cant read what is inside response. This part
in programming is called parsing. To parse my response | am using json.loads from Json python
library.Then i am writting if statement to my While Loop, this statement is if text_list[’'mission_text’]
== quated: break , which mean that when the mission_text will be equal to Moving to + our entered

possition name + (0.7 meters to the goal), loop will break and pass code to the next part.

mis mes () :
quated = + first position +

mission me = requests.get (host + =headers)

ek
(mission message.text)

text list = json.loads(mission message.content)
(text list)

text list]] == quated:

Picture 16. mis_mes function (autors picture)
6.8.5. main_api function

Inside this function first variable is get_missions, it is using get request with host + missions url,

which means it is http://mir.com/api/v2.0.0/missions , get_missions is used to get list of our missions

with their urls, guids and their names. Now i need to parse my response from the robot, same to the
previous function mis_mes, i am using json.loads fom Json library. For parsing i have created variable
list_missions, it is parsing response using json.load method and saving it . Then I have created empty
dictionary dict_missions to save inside this dictionary all robots mission names. Afterwards | have
created variable list_name_missions and made it to be equal to dict_missions.keys(), which means
that we made dict_missions to be our key for further filtering. As I want to make my code to be easier
for user, 1 am using two following variables in this part, which are create_mission_1 and
create_mission_2, those variables are user inputs from Inputs part of the code. After that | have 2
similar variables, guid_1 and guid_2, those variables appeal to dictionary dict_missions which | have
made as my key, and are getting specific mission ids, called guids, depending on a entered mission
names by user, from create_mission_1 and create_mission_2 variables. Mir robot requires mission
id, which is randomly generated code by robot, for any operation with robots missions. We cant
simply use mission names in our post mission request, that’s why I have variables guid 1 and guid 2,

they are storing those ids and we can use them afterwards for request. Then | am starting to work

26

http://mir.com/api/v2.0.0/missions

already on deleting and adding missions to the robot. And this parts starts with deleting all missions
that are in queue on the robot at this time. We need to do this, because in my conditions, client have
looped mission in queue all the time and the post request on mir works the way that when it adds
missions in queue, they go to the bottom of the queue, so this will be the last mission that robot will
do and this is not bad, but as we know that clients mission is looped, that means that if I post mission
to the bottom of queue, robot will never reach it. For this delete_actions variable is used, which gives
delete request to the robot, with the host+ mission_queue url. Thereafter | am starting adding charging
mission in queue, to do that I have variable mission_id 1 which is equals to {“mission_id”:guid 1},
writing “mission_id” is required for the robot to recognize that I am giving him id of the mission,
otherwise it will not understand that and will give response 400 which means “Argument error or
Missing content type application/json on the header or Bad request or Invalid JSON” . Then I made
variable charging_mission that send post request to the robot, with host+ mission_queue url and |
type json = mission_id_1, which is used to give to the robot id of the mission. When charging mission
is posted to the robot, mir should charge at station for 1 hour, for this I use sleep block from time
library. When 1 hour has passed, robot should replace charging mission with regular one. For deleting
charging mission | have delete_charging variable created, which gives delete request to the robot with
host+mission_queue url, same way with deleting all missions in queue, but this time I am using json
= mission_id_1 again to tell robot that we need to delete specific mission, in this case it is charging
mission. Calling regular mission is same to calling charging mission and it is post request with
host+mission_queue url, but this time | have variable mission_id_2, that again tells robot we are going
to give him mission id with typing “Mission_id”: and then giving him regular mission guid that is
stored in variable called guid_2 and posting the mission | am entering json = mission_id_2, to call

regular mission instead of charging mission.

main api () :

get missions = requests.get (host +
(get missions.text)

list missions = json.loads(get missions.con
(list missions)
dict missions = {}

mission list missions:
dict missions[mission]|

(dict missions)

=dict missions .key

guid 1 = dict missions|cr
(guid 1)

27

2 =

guid

requests.delete (host +

on_1d :guid 1}
ging mi C requests.post (host + =mission id 1
=heade

=mission id 1

charging)

mission id 2 o
regular missi requests.post (hos =mission id 2
=headers)

(regular mission)

Picture 17. main_api function (autors picture)

6.8.6. timer function

The last function is my script is timer, it is used to read entered time by user, which | am getting with
scheduler variable from the Inputs part and then at this time call functions mis_mes and main_api. In
this function I am using Schedule python library, this library is very easy to use, we just need to enter
how often we want to schedule script, in my case every day, then we need to enter at what time we
want it to do and what command should it do. After entering all needed information, for running, this

library requires While True loop. Which will control while all entered conditions are true or not.

timer () :
mis mes ()
main_ api ()

schedule.every () .day.at (scheduler) .do (timer)

schedule.run pending/()
tm.sleep (1)
tm.sleep (1)

Picture 18. timer function (autors picture)

28

7. AUTOMATING SCRIPT

I need my script to run automatically every day at exact time. And there is 3 most popular ways to do
it: Windows Task Scheduler on Windows Machines, Crontab on Linux and MacOS machines and

Schedule library in Python, which can be used on all 3 systems.
7.1. Python Schedule library

One of the possible options to automate python script is Schedule library in python. Schedule is not
a standard Python library, so it is needed to be installed manually. The best way to install Schedule

library is by typing: pip install schedule in console.

7.2. Crontab

On the Linux and MacOS systems there is build in schedule programm called Crontab, usually called
simply cron. Crontab is one of the most popular ways for scheduling programming codes. To open
crontab you need to open your terminal and enter crontab -e. If you are starting Crontab for the first
time then it will ask you to select editor. The most popular editor for Crontab is Nano.

2]

File Edit Tabs Help

e(»lga»rvrasph'erryp About

edgar@raspberrypiedgar:
f =

) cronta r edga

Picture 19. Starting Crontab for the first time (autors picture)

29

Crontab have 6 parameters that need to be filled:
1) Minute parameter
2) Hour parameter
3) Day of month parameter
4) Month parameter
5) Day of week parameter
6) Command parameter

So the example of the Crontab syntax is 05 05 05 05 05 /home/mir_rest_api.py . This means that
python code that is saved as rest_api file, which is located at home will execute at 05:05 am at the 5th

of May on Friday.

There is also such thing as * in crontab, which means every, so if we want to say that we want to

execute command every minute, we will use * instead of number in minute parameter.

Example of using * in crontab is * * * * * + your command. This means do command every minute.

Only in command parameter there could not be * , because we need something to schedule.

GNU nano 5.4 /tmp/crontab.gMupGB/crontab *

Picture 20. Crontab example (autors picture)

30

Another example could be if we want to execute code at every day at 10:30 am from Monday to

Friday. The syntax for this is 30 10 * * 1-5 /home/mir_rest_api.py

For the client needs, as we know that client want robot to go charging at 12:00 am every day, syntax
will be 00 12 * * * + path to the script file

7.3. Windows Task Scheduler

Windows have own program for scheduling tasks, which is called Windows Task Scheduler. It is

build in program, so doesn’t need to install anything separately.
How to schedule Python code using it?

First of all we need to have Python script written and saved as a file, because we need something to

execute.

The next thing you need to do is to enter task scheduler in windows search bar, find the program and

open it.

After opening task scheduler, need to click create task

7) Task Scheduler = (] X

File Action View Help
&= @ Hm

) Task Scheduler (Local) Actions

Task Scheduler Library Task Scheduler (Local) &

| Overview of Task Scheduler -]

Connect to Another Computer.
|, You can use Task Scheduler to ®] Create Basic Task
create and manage common tasks S
that your computer will carry out I
automatically at the times you
specify. To begin, click a command
in the Action menu. @ Display All Running Tasks

% Create Task.

Import Task.

— §1 Enable All Tasks History
[Task status -]

AT Service Account Configuration
Status of tasks th... Last 24 hours View »
Refresh

H Hep

Summary: 0 total - 0 running, 0 succeeded, 0.

Last refreshed at 5/10/2023 1:23:51 PM Refresh

Picture 21. Task Scheduler main menu (autors picture)

31

Then new window will open, where you need to enter your name and optionally you can add
description of what exact scheduler is doing. As well as opportunity to choose if you want this task
scheduler to execute only if user is logged on or you want this scheduler to be able to run even if user

is not logged on. And also you can put check mark to let this task to run with the highest privileges.

File Acion View Help

Ll J| @ Create Task X
(5 Task Sche¢ |
= % Taskse General Triggers Actions Conditions Settings "
i Name:
| Location: \
Author: EDGAR\edgar
Description:

When running the task, use the following user account:

EDGAR\edgar Change User or Group...
© Run only when user is logged on
© Run whether user is logged on or nat

Do not store password. The task will only have access to local computer resources

() Run with highest privileges

] Hidden Configure for: Windows Vista™, Windows Server™ 2008

0K | Cancel

Picture 22. Create task General bar (autors picture)

Then we need to move from General bar to Trigger tab and click new. There we have different very
in-depth options of when we want to schedule our task.

File Action View Help
as m .
| Task schec New Trigger %
| . (@ Tasksc General Triggers Actions Conditions S
Beginthetask: On a schedule
When you create task, you can specify th{

= s O Onetime | Strt | 510203 5 | 13422PM Synchronize across time zones
rigger i

© Daily

Weekly

Monthly

Advanced settings
_ Delay task for up to (random delay):

Repeat task every:

Stop task f it runs longer than:

Expire

8 Enabled

Picture 23. Trigger options (autors picture)

32

Now we go to another bar called Actions and click new. Here in Program/Script part we need to
specify the path to our python.exe file. In add argument part we need to specify our python script
name as well as specify that this is python file, example mir_rest_api.py. And in Start in part we need

to specify the path where our script is located.

New Action %
You must specify what action this task will perform. E
« Action: Startaprogram
Settings

Program/script:

Path to Python.exe Browse...

Add arguments (optional): Name of the script file

Start in (optional): Path to script file

Cancel

Picture 24. Task Scheduler Action Bar (autors picture)

And finally click ok, task scheduler will ask you to enter your PCs password and scheduler is created

successfully
7.4. Best way to schedule tasks

So what is the best way for scheduling Python script?

Overall all 3 methods mention before are viable, however | want to mention that in my experience
Windows Task Scheduler is the worst one, because scheduling task using it takes much more time in
comparison to 2 other methods and it is a little bit complicated to use, as well as | had some problems

working with Python scripts using it. However this method have wide options for customization.

The crontab is very solid option for scheduling scripts, it is very easy and fast to use. The biggest

disadvantage is that crontab doesn’t exists on a Windows systems.

33

Schedule library in Python is overall the best option in my opinion, it has easy for understand syntax
and code writing is fast. As this scheduling method comes as a code, from the user side it is required
to just enter time and nothing more, everything else is done by Python code. Also this method has
good portability, because Python code can be executed on Linux, Windows and on MacOS systems

without any changes.

34

8. COMPETITORS

The main competitor to my solution is MIR Fleet from MIR manufacturer.
MIR Fleet is available in 2 variants:
8) MIR Fleet PC [3]
9) MIR Server Solution [3]
MIR Fleet PC: comes as a physical device, little box computer [3]
MIR Server Solution: is made for intergation into existing server and comes as a software only. [3]
The price of MIR Fleet is: 13000 euro, so i am competing with expensive solution.

The main advantage of MIR Fleet is that it adds Fleet tab into existing MIR software, which makes
this solution easy to use for user. The biggest dissasvantage on the other hand is that MIR Fleet doesnt
let you to add 1 specific functionatily separatly, that means that you should buy whole sulutions and
pay money for all its functionalities, even if you dont need all of them. Advantages of my solution is
that it could be sold to the client for a much cheaper price, it could be 3 times less price or even more.
It is focusing on a specific functionallity that client want to get and it could be modernised in future

if needed. As my solution is software it doesnt require spending money on materials.

35

9. FUTURE

My project have very good potential for future growth. As REST API gives access to all robot
features, it is possible to combine REST API and the power of Python for adding more functionality
to it, because right now it is used only for automating charging process of the MIR robot, but REST
API and Python combination can be used to automate even more processes.

Script cant run itselt, it requires something to execute it. Python code can be executed without any

changes on 3 main operation systems:
10) Windows
11) Linux
12) MacOS
So in the future it is possible to add support of 2 more systems, which are:
1) Andriod
2) i0S
Both of them are used as smartphone and tablet operating systems.

Another step in my project is going to be integration of my solution into clients environment. It is
needed to analyze the working environment of the MIR robot and decide how exactly we are going

to execute script.

Right now,my solution is made as a code part only, so it is made for integrations into existing server
solutions, samilar to MIR Fleet Server Solution. However i have ideas of how to make standalone
solution. Depending on what i have for now, the best solution in my opinion could be using single-
board computer, for example, raspberry pi, which is the most popular single-board computer solution

right now.

It is required for executable device to be in the same network with MIR. So there is 3 ways of using

raspberry pi with MIR robot:

1) The first one is to install raspberry pi inside robot and connect them both to internal MIR
robots WIFI

36

2) The second one is to use external router and connect both raspberry pi and MIR robot to the

external router

3) The last one is probably for smaller rooms. Connecting raspberry pi directly to MIR robots

wifi network and use builded in raspberry pi wifi adapter.

Another oppurtunity for the future growth of sulution and also oppurtunity to make this solution
standalone, could be making executable file with graphical user interface. For the GUI could be used

2 of mentioned in my work Python libraries, which are:
1) Tkinter
2) PyQt5

And to make an executable file, there exists such toold as py installer, which will convert our .py file

into exe file, that could be easily used on all PC systems.

37

SUMMARY

The problem i was solving is that DemekCNC client wanted to put MIR robot at charging station at
exact time automatically at the time when they all are going for lunch and charge during this time.
Robots default software don’t have this function. MIR manufacturer offers their solution, MIR Fleet,
which adds mission scheduling feature to the MIR as well as a lot of other features. The problem of
MIR Fleet for the client is its price, which is high and that they don’t need other extra features for
their robot. After this time, they wanted to put their regular mission back. My suggested solution for
this problem was to use MIR robots own REST API and combining it with Python, create code that
will be able to add missions to the robot and take them out of the robot. | have added 2 more features
to my code, except adding and deleting missions. The first one is control of the mission cycle. Which
is used to check if robot have done mission cycle to the end or not. This function is needed because
clients regular mission is looped, which means that robot repeats same movements over and over
again. Because of that, it is not possible to simply add charging mission to the robots queue, because
every time mission comes to the mir robots queue it is going to the bottom of the queue and as we
know that clients regular mission is looped, it will never end and charging mission will never execute.
So the only way to add charging mission to the mir robots queue is to firstly remove all missions that
are already in queue and only then add charging mission. However, if | remove regular mission in the
middle of mission cycle there could be such situation, when robot comes to the charging station with
the product on top of it. This situation has risk to damage the product. Because after charging during
launch time robot will come back to regular mission and start his movements from the first action. So
in this situation, if robot haven’t delivered product to the destination area before going at charging
station and will start mission from the beginning, there is high risk to get new product on the top of
the product that remained on the robot, which could lead to product damage. To prevent this, | have
function mis_mes that will firstly check if mission cycle have been finished and only after that, pass
code to the removing and adding mission part. And the second one is mission filtering using mission
names. By default, robot can make operations with mission only using specific mission id, which
looks this way: 96adef52-cc93-11ed-bf3d-94c691a73491. It is not very easy to find this id, so |
decided to add opportunity to make operations with mission using mission names, which are easy to
find with MIR robots software. Summarizing everything | have done, can say that | have developed
working solution for the problem that I received form the company and it has opportunity for future
growth. For example right this code is used to solve problem with charging mission scheduling, but
it can be used for adding other functionalities as well. Video with the working code as well as full

code and code scheme you can find in attachments.

38

KOKKUVOTE

Probleem, mida lahendasin on, et DemekCNC kliendil on vajadus panna MIR roboti laadima kindlal
ajal. Kliendil, koik tootajad lahevad I6unale kell 12:00, ehk tooruumis ei ole mitte kedagi sellel ajal
ning too protsess peatatakse. Klient tahab et MIR robot laheks automaatselt 1duna ajal laadimisjaama
ja laeks ennast pausi ajal, kokku 1 tund. Pérast pausi, tahab klient automaatselt taaskaivitada roboti
tavamissiooni. Missiooni ajatamise funktsioon puudub tavalisel roboti tarkvaral ja tootja pakub selle
funktsionaalsuse lahenduseks MIR Fleet tarkvara, mis on kallis lahendus, praegune hind on 13000
eurot. MIR Fleet lisab véimaluse ajatada roboti missioone ja mitte ainult seda, vaid lisab ka teisi
funktsionaalsusi lisaks, kuid klientidel pole vaja tdiendavaid funktsioone ja ei ole ndus maksma
soovitud litsentsi, et kasutada ainult ajatamise funktsioon MIR Fleetiga. MIR on Mobile Industrial
Robot, mis tdéhendab et see on Mobiilne Tédstus Robot. On olemas 4 erinevaid mudelid: MIR 100,
250, 600, 1350. Peamised erinevused on liikumise kiirus ja kandevoime. Number tdhendab kaalu, mis
robot suudab tdsta, naiteks MIR100 saab tdsta kuni 100 kilogrammi, MIR250 kuni 250 kilogrammi
ja nii edasi. Kuid tarkvara koodi jaoks pole see oluline, sest neil on kdikidel sama tarkvara. MIR
Fleetil on olemas 2 versiooni: esimene on MIR Fleet PC, mis tuleb véikese eraldiseisva arvutina ja
teine on MIR Fleet Server Solution, mis on arendanud paigaldamiseks olemasolevasse

serverisusteemi.

Minu pakutav lahendus kasutab MIR enda REST API vdimalusi, toetudes Python scriptile, mis
vBimaldab sama funktsionaalsust ja teha seda kdike kasutajate jaoks v@imalikult lihtsalt. REST API
on Representational State Transfer Application Programming Interface, ehk see on rakendustarkvara
liides, mis kasutab REST reeglid ja annab vGimaluse suhelda robotiga. Pdhiidee on, et meil on olemas
REST API klient, meie juhul see on Python script, mis saadab paringu serverile, meie juhul server on
MIR robot, mis saadab Kkliendile vastuse. Python on kdrgtasemeline, uldotstarbeline
programmeerimise keel, mis on téna véga populaarne. Pythoni eelised on, et ta on programmeerija
sObralik, Pythoni kood on lihike ja lugemiseks mugavam vorreldes teiste keeltega. Pythonil on
olemas palju standardseid raamatukogusid. Raamatukogu on eelvalmistatud koodi 16ikude Sabloon,
mis on vOimalik kasutada oma koodis, et kiiremini ja lihtsamini programmeerida. Python on ka
portatiivne keel, see td4hendab et ilma muudatustega v6ib panna kéima koodi kdikidel platvormidel,

vahet pole missugune stisteem oli kasutatud koodi kirjutamiseks. Minu koodis on 3 funktsionaalsust:

Esimene on missioonide kutsumine ja eemaldamine kasutades MIR roboti REST API vdimalusi, see
on koodi peamine funktsionaalsus. Teine on missiooni lopetamise kontroll, see on véga tahtis

funktsionaalsus, sest kliendi robotil on tehtud ainult 1 missioon, mis jookseb loopis, mis tdhendab et

39

robot kordab 16putult sema missiooni ja kui me lihtsalt lisame roboti missioonile midagi juurde, siis
ta laheb jarjekorra alla ja kuna roboti tavaline missioon on loopis, siis robot mitte kunagi ei joua
alustada seda missiooni. Ainuke vBimalus on eemaldada k6ik missioonid jarjekorrast ja ainult parast
seda lisada laadimise missioon, siis laadimis missioon on esimene ja ainuke missioon jarjekorras ja
robot hakkab seda missiooni labi viima. Seepérast on oluline, et robot teeks missioni tstikli 1G6puni.
Kui me vBtame roboti dra missiooni tsukli keskel, meil vdiks olla selline olukord, kus robot I&heb
laadima ja roboti peal on toode, sest ta ei joudnud toodet viia sihtpunkti, siis robot laheb laadima koos
tootega. Parast I6unapausi I16ppemist, kui me paneme roboti tema tavamissioon tagasi, robot ei jatka
oma missiooni vaid alustab seda uuesti, esimesest positsioonist siis vdib olla selline olukord kui toode
peale pannakse teine toode ja see vOib tekitada kahju. Selle véltimiseks on olemas koodis mis_mes
funktsioon , mis kontrollib kas missiooni tstikkel on I8petanud vdi mitte ja kuni selle hetkeni, kuni
robot teeks tsukli 16puni ei lubata koodil edasi minna. Siis kood eemaldab k&ik missioonid, mis on
robotil jarjekorras ja lisab laadimise missiooni, siis robot laadib 1 tund ja pérast seda kood eemaldab
laadimise missiooni ja paneb tagasi roboti tavalisse missiooni reziimi.. Viimane funktsionaalsus, mis
on loodud minu I6putd6d raames, on missioonide filtreerimine, kasutades nende nimesid. Selline
funktsionaalsus on kasulik, sest MIR ei anna vdimalust kutsuda vaikimisi missioone, kasutades nende
nimed, vaid ta tahab saata unikaalse missioni id, mis ei ole véga lihtne leida. Missioni id naeb vélja
jargmiselt: 96adef52-cc93-11ed-bf3d-94c691a73491. PGhimdtte on, et kood rakendub missiooni

nimele 6ige missiooni id.

Kokkuvdteks voin oelda et minul on tehtud to6tav lahendus esialgsele probleemile ning sellel
lahendusel on hea potentsiaal edasiarenduseks. Naiteks praegu see on kasutatud laadimismissiooni
ajatamise probleemi lahendamisel, kuid sarnane lahendus vdib-olla kasutatud ka teise

funktsionaalsuse loomises.

40

SOURCES

[1] Mir rest api manual [Webmaterial]: (Available only inside MIR robots
software) [Used:05.04.2023]

[2] Company DemekCNC website [Webmaterial]: demek.ee [Used:05.04.2023]

[3] MIR robot website [Webmaterial]: mobile-industrial-robots.com [Used:05.04.2023]

[4] GeeksForGeeks website [Webmaterial]: geeksforgeeks.com [Used:05.04.2023]
[5] Python website [Webmaterial]: python.org [Used:05.04.2023]

[6] Programmers forum Stackoverflow [Webmaterial]: stackoverflow.com [Used:05.04.2023]

41

LIST OF ATTACHMENTS

Attachment 1. Full code
Attachment 2. Code scheme

Attachment 3. Code video

42

ATTACHMENTS

requests
time sleep
schedule
Jjson
time tm

first position =
create mission 1
create mission 2
scheduler =
mis mes () :
quated = + first position +

mission message = requests.get (host +
(mission message.text)

text list = json.loads(mission message.content)
(text list)

text list]] == quated:

main api () :

get missions = requests.get (host + =headers)
(get missions.text)

list missions = json.loads(get missions.content)
(list missions)
dict missions = {}

mission list missions:
dict missions[mission |]] = mission
(dict missions)

=dict missions .keys()
guid 1 = dict missions[create mission 1] |

(guid 1)
guid 2 = dict missions[create mission 2] |

=headers)

(guid 2)

=headers)

. 1id72 }
regular missi equests.post (host +
=headers)
(regular mis
timer () :
)

(
main api ()

mis mes

schedule.every () .day.at (scheduler) .do (timer)

schedule.run pending ()
tm.sleep (1)

Attachment 1. Full code

44

Take 4 inputs
from user

v ! '

!

First Charging
Time Position | | Mission
Name Name

Regular
Mission
Name

fait for time
to be equal to
uzer input

ec
equal to user
input

3 YES
Control if mission
cycle has been
finished

Wait for
mission cycle
to finish

YES

Delete all missions in

queue

wLLLLL

—

Attachment 2. Code scheme

v

Call charging mission

i

Delete charging
mission

|

h
o

| Call regular mission

back
_

45

Video link for the running code
https://www.youtube.com/watch?v=gbq7xf40sFw
Attachment 3. Code video

46

https://www.youtube.com/watch?v=gbq7xf4OsFw

