Poolautomaatse ümarlihvpingi robotiseerimise tasuvusanalüüs

dc.contributor.advisorKangru, Tavo
dc.contributor.authorMatsina, Eerik-Hannes
dc.date.accessioned2021-03-17T10:08:38Z
dc.date.available2021-03-17T10:08:38Z
dc.date.issued2018
dc.description.abstractAntud lõputöö eesmärgiks oli uurida poolautomaatse ümarlihvpingi tasuvust pingi teenindamisel ning leida sobivad abimehhanismid vajalike ülesannete täitmiseks. Lõputöö käigus selgitati välja robotiseerimise vajadus ning ulatus, vajaminevad abimehhanismid ning nende paigutus ja tööpõhimõtted. Lisaks selgitati välja võimalik tsükliaeg ning võrreldi roboti sooritusvõimet operaatoriga. Leitud andmete alusel teostati majanduslik analüüs, leidmaks kas roboti rakendamine tööpingi teenindamiseks on majanduslikult tasuv ning millises ulatuses. Analüüsi tulemusel selgus, et tööstusliku roboti rakendamine ümarlihvpingi teenindamiseks on mõistliku majandusliku tasuvuse piiril. Tasuvusaeg on veidi üle 4 aasta ning eeldatav eluiga teenindusoperatsiooni juures on veidi üle 20 aasta. Selle tõttu võib öelda, et robotiseerimine on tasuv juba praeguse töötlemismahu juures, eeldusel et töötlemismaht püsib või tõuseb. Töötlemismahu tõusu ja/või tööjõukulude tõusu korral lüheneks tasuvusaeg veelgi.et
dc.description.abstractThe following thesis Cost-benefit Analysis of Robotic Tending for a Semi-automatic Centreless Grinding Machine was written to explore the possibilities and related costs to automate a semiautomatic grinding machine. Due to rising workforce costs and higher production rate requirements industrial robots are becoming much more widespread. This has led to a higher interest in small and medium sized manufacturing plants to start investigating different ways to implement robots in their workflow. The aim of this thesis was to find out whether an industrial robot tending a centreless grinding machine would be financially beneficial. To do this a human operator with known data was compared against a simulated robot doing the same tasks. To find out the payback time, peripheral devices were also included in the analysis. Some peripheral devices were designed for this specific purpose, such as the matrix tables, the robot stand and fingers for the pneumatic gripper. With data from a human operator and the simulated robot, it was possible to determine whether and when the break-even point would occur. Using information gathered from a sample part processing and extending the results to the whole production list, it was determined that the break-even point is approximately 4 years, however it should be noted that the lifespan of the robot is approximately 20 years in this application. This indicates that robotic tending in this application is financially viable within a reasonable timeframe. This is under the assumption that the workload will stay at the same level or increase. As the workload or labour cost increases the payback period will shorten.en
dc.identifier.urihttps://dspace.tktk.ee/handle/20.500.12863/2092
dc.languageet
dc.publisherTallinna Tehnikakõrgkool
dc.subject.classificationEconomy and Management--Mechanical Engineering Business Economicsen
dc.subject.classificationEconomy and Management--Economic Analysisen
dc.subject.classificationMechanical Engineering--Electrical Engineering and Electrical Equipmenten
dc.subject.classificationMechanical Engineering--Production Engineering and Technologyen
dc.subject.classificationMajandus and ärijuhtimine--Masinaehitusettevõtte ökonoomikaet
dc.subject.classificationMajandus and ärijuhtimine--Majandusanalüüset
dc.subject.classificationMehaanika--Elektrotehnika ja elektriseadmedet
dc.subject.classificationMehaanika--Tootmistehnika ja -tehnoloogiaet
dc.subject.otherMasinaehituset
dc.subject.otherMechanical Engineeringen
dc.titlePoolautomaatse ümarlihvpingi robotiseerimise tasuvusanalüüs
dc.title.alternativeCost-benefit Analysis of Robotic Tending for a Semi-automatic Centreless Grinding Machine
dc.typethesisen
dc.typelõputööet

Failid