Videokonverentsi teenuse süsiniku jalajälje arvutamismetoodika valik Telia Eesti AS näitel

Kuupäev

2024-05-13

Väljaande pealkiri

Väljaande ISSN

Köite pealkiri

Kirjastaja

Tallinna Tehnikakõrgkool

Kokkuvõte

Töö eesmärk oli leida, milliseid metoodikaid kasutatakse teenuse süsiniku jalajälje arvutamiseks ning kaardistada ühe Telia Eesti AS teenuse näitel süsiniku jalajälg. Püstitatud eesmärgid said täidetud. Töö esimeses pooles anti ülevaade võimalikest teenuse süsiniku jalajälje arvutamise metoodikatest nagu olelusringi hindamine, sisend-väljund metoodika, Toote olelusringi arvestuse ja aruandluse standard, ISO 14000 perekonna standardid ja süsiniku käejälg. Metoodikatest on teistest enim erinev sisend-väljund metoodika, mida üldiselt kasutatakse finantstulemuste vaatamiseks ning mis on pigem keerukas. Toote olelusringi arvestuse ja aruandluse standard, ISO 14000 perekonna standardid ja süsiniku käejälg on omavahel rohkem sarnased ning annavad raamistiku olelusringi hindamisele. Süsiniku käejälje omapära seisneb selles, et negatiivse mõju asemel pööratakse tähelepanu rohkem toodete ja teenuste positiivsele mõjule ehk kuidas mõne tegevuse või lahendusega saaks KHG emissioone vähendada. Toote olelusringi arvestuse ja aruandluse standard ja ISO 14000 perekonna standardid on sarnased, sest mõlema puhul vaadatakse süsiniku jalajälge kolmes mõjualas. Erinevus seisneb selles, et KHG protokoll, millel põhineb Toote olelusringi arvestuse ja aruandluse standard, sai alguse vabatahtliku initsiatiivina ning põhifookuses on kliimamõjude muutmine, kuid ISO standardid annavad pigem raamistiku keskkonnajuhtimiseks ja keskkonnaalaseks vastutuseks. Olelusringi hindamise puhul on tähtsaimaks aspektiks see, et keskendutakse toote või teenuse kogu eluetapile ehk vaadeldakse selle mõju n-ö sünnist surmani. Töö teises pooles kaardistati Telia Eesti AS videokonverentsi teenuse näitel süsiniku jalajälg ning selleks kasutati olelusringi hindamise meetodit. Videokonverentsi teenuse süsiniku jalajälje arvutuse tegemiseks koguti infot nii Telia sisestest allikatest kui ka välistest allikatest. Leiti kasutatavate seadmete süsiniku jalajäljed ja energiakasutus, andmemahtude liigutamise andmed ja eriheitetegur, taastuvallikatest elektrienergia ja Eesti elektrienergia eriheitetegur, tööpäeva tundide arv, tööpäevade arv, puhkepäevade arv ning tundide arv puhkepäevadel. Anti soovitusi, kuidas saaks teenuse süsiniku jalajälje arvutamise protsessi parendada. Telia kogu videokonverentsi teenuse süsiniku jalajäljeks kasutades Eesti tava elektrienergiat (fossiilkütustest pärinevat) saadi 22 458,75 kgCO2e ning kasutades taastuvallikatest elektrienergiat 20 610,30 kgCO2e. Eesti tava elektrienergiat kasutades on videokonverentsi teenuse süsiniku jalajälg 8% suurem kui taastuvallikatest elektrienergiat kasutades. Kogu videokonverentsi teenuse süsiniku jalajäljes moodustasid kasutatavad seadmed 12% ning elektrienergia 88% jalajäljest. Arvutuse tulemused oleks täpsemad, kui tootjad avalikustaksid toodete põhiseid süsiniku jalajälgesid toote elutsükli etappidena. Tootjad võiksid toodetega kaasa anda kompaktse n-ö tehnilise passi, kus oleks leitavad kõik tootega seotud vajalikud andmed, sh KHG heitkogused ja energiatarbimine. Samuti võiks Telia hangete käigus automaatselt koguda toodetega seotud vajalikku infot, et kogu protsessi lihtsustada ning uurida, milliseid servereid ja millisel energial töötavaid serverid kliendid kasutavad, kellele mingeid teenuseid pakutakse.


Methodology for Calculating the Carbon Footprint of Video Conferencing Service: The Case of Telia Estonia AS Over the past five decades the frequency and intensity of extreme weather phenomena have increased. Recent projections indicate a potential rise in global temperatures of 2,5-4,5°C by the year 2100 if significant emissions reductions are not achieved. The problem has become so serious that even if carbon emissions were to cease altogether, it would take approximately 1000 years for ocean temperatures and sea levels to revert to pre-industrial levels. In order to mitigate climate change, an agreement was reached among 195 countries at the Paris Climate Conference in 2015, with primary aims centered on curbing global temperature escalation and mitigating emissions. In alignment with this endeavor, the European Union has committed to reducing greenhouse gas emissions by 55% compared to 1990 levels and attaining climate neutrality by 2050. Due to climate change and the established climate goals to reduce emissions, an increasing number of organizations have commenced measuring and evaluating their carbon footprint. This aids organizations in pinpointing the most significant climate impacts of their operations and devising a plan to reduce greenhouse gas emissions. The aim of this thesis is to identify the various methodologies employed in calculating the carbon footprint of services. In order to achieve the objective, the carbon footprint of a specific service provided by Telia Estonia AS is assessed as an illustration, aiming to gain an understanding of the internal and external data necessary for carbon footprint calculation. The chosen service for the illustrative calculation is the video conferencing service, given its widespread usage among Telia’s clientele. Video conferencing is a service characterized by specific equipment and service structure. Furthermore, Telia’s clients have exhibited interest in the carbon footprints of the services they procure from Telia, with video conferencing being the inital service of inquiry. The paper provided an overview of potential methodologies for calculating the carbon footprint of services, including Life Cycle Assessment, Input-Output Methodology, Product Life Cycle Accounting and Reporting Standard, ISO 14000 series standards and Carbon Handprint. While Life Cycle Assessment (LCA) offers a structured approach to evaluate climate impacts, its flexibility suits diverse needs. The Input-Output model expands LCA by considering economic impacts, accounting for direct and indirect effects. The Product Life Cycle Accounting and Reporting Standard aids in understanding greenhouse gas emissions over a product’s life cycle, with optional land use considerations. ISO 14060 provides general guidance and reporting instructions for service footprint calculations. As the main objective was to assess data availability for calculating the carbon footprint of the service, the company did not expect a detailed and specific framework to be applied. The general LCA approach helped in understanding the service’s nature and identifying available data. For determining the carbon footprint of the video conferencing service, the framework considered emissions from equipment, including monitors, energy (during operation and standby) and data transmissions volumes. In addition to calculating the carbon footprint of the video conferencing service at the Telia office, which utilizes renewable energy sources, a comparison calculation was also performed using Estonia’s conventional electricity, primarily produced from oil shale in Estonia. For the calculation, the carbon footprints and energy usage of equipment were determined, along with data on data transmission volumes and emission factors, both for renewable energy and Estonia’s conventional electricity. Furthermore, considerations included the number of workday hours, workdays, rest days, and hours on rest days. Using Estonia’s conventional electricity, the carbon footprint of Telia’s entire video conferencing service was calculated to be 22 458,75 kgCO2e, while using renewable energy, it was 20 610,30 kgCO2e. When using conventional electricity, the carbon footprint of the video conferencing service is 8% higher than when using renewable energy. Equipment accounted for 12% of the total carbon footprint, while electricity accounted for 88%. The calculation results would be more precise if manufacturers disclosed product-specific carbon footprints at various stages of the product life cycle. Providing a compact „technical passport“ with essential data, including GHG emissions and energy consumption, would enhance transparency. Telia could explore the server infrastructure and energy sources utilized when delivering services to clients, particularly when data is transferred to external servers. Telia could also simplify the process by automatically collecting necessary product-related information during procurement.

Kirjeldus

Märksõnad

Keskkonnatehnoloogia::Seadused ja regulatsioonid::Keskkonnajuhtimine ja aruandlus ettevõttes

Viide