Ümbertöödeldud polülaktilisest happest filamendi sobivus kolmemõõtmeliseks printimiseks

dc.contributor.advisorTalve, Siret
dc.contributor.authorKotsar, Mari-Liis
dc.date.accessioned2021-03-17T10:07:52Z
dc.date.available2021-03-17T10:07:52Z
dc.date.issued2018
dc.description.abstractOleks raske ette kujutada tänapäeva maailma ilma plasti ehk plastmassita. Plast on kujunenud igapäevase elu osaks ja me puutume iga päev sellega kokku, alates kodustest majapidamistarvetest lõpetades kõrgtehnoloogiliste objektide ja meditsiinitarvikutega. Plastil on palju eeliseid võrreldes teiste materjalidega ja see on eelistatud materjal nii disaineritele kui inseneridele tänu kergele kaalule, paindlikkusele, vastupanule korrosioonile, suurele värvivalikule, töötlemise hõlpsusele jne. Siiski tuleb arvesse võtta ka plastiku puudusi. Enamik plaste, mida me teame toodetakse valdavalt naftast saadavatest kemikaalidest, mis on teatavasti taastumatu ressurss. Seega on oluline leida alternatiivseid lahendusi, näiteks bioplastide ja plastide taaskasutamise näol. Üks alternatiivne lahendus on polülaktilise happe (PLA) kasutamine. PLA on biolagunev, läbipaistev polümeer, mis pärineb 100% taastuvatest ressurssidest, nagu mais ja suhkrupeet. See on laialdaselt kasutusel nii pakenditööstuses kui ka biomeditsiinis. Tänu selle taaskasutatavusele, laienevad PLA kasutusalad pidevalt, sealhulgas ka kolmemõõtmelise (3D) printimise valdkonnas. 3D printimine on protsess, mille käigus objekti disain konverteeritakse arvutil prinditavaks failiks. Seejärel tarkvara viilutab objekti horisontaalselt kihtideks, et 3D printer saaks sulatada plastiku kihtide kaupa üksteise peale kuni lõplik toode on valmis. Käesolev lõputöö kirjeldab plastide taaskasutamise väikesemahulise lahenduse katsetusi. Lõputöö eesmärk oli ümber töödelda varemalt ebaõnnestunud 3D-prinditud objektid ning toota neist uus 3D printimiseks kasutatav plastniit ehk filament. Lisaks on oluline osa ka võrdlusel. Töös võrreldakse plastniiti, mis on toodetud esmasest toorainest ning töökäigus valminud ümbertöödeldud materjalist plastniiti. Selleks kasutati 3D prinditud mudeleid mõlemast materjaist, millel viidi läbi tõmbetugevuse teste. Selle käigus katsetati nende mehanilisi omadusi, et näha omaduste kvaliteedikadu pärast mitmekordset töötlemist. Kasutades õigeid parameetreid pressimismasinal, on võimalik toota ümbertöödeldud plastniiti, mida saab edukalt kasutada 3D printimiseks. 3D printimisel esines küll mõningaid probleeme, sest filament oli kohati kas liiga jäme või liiga peenike, kuid enamasti oli printimisprotsess siiski edukas. Selle tõestuseks läbi viidud tõmbetugevuse testid näitavad küll mõningast kvaliteedikadu võrreldes algset plastniiti ümbertöödelduga, kuid see on käsitletav kui paratamatu nähtus materjali mitmekordsel ümbertöötlemisel. Arvestades kõiki töö jooksul läbi viidud eksperimente selgus kokkuvõttes, et uurimustöö oli edukas ning püstitatud eesmärk saavutati. Eelpoolmainitust hoolimata tuleks siiski jätkata uuringutega selles vallas, et katsetada rohkem erinevaid parameetreid materjali pressimiseks, sealjuures jättes näiteks vahele granuliseerimisprotsessi, et vähendada energiakulu. Pöörata tuleb tähelepanu olulistele asjaoludele, nagu jahutusprotsess pressimisel, pressimismasina tsoonide temperatuurid ja 3D printeri parameetrid.et
dc.description.abstractIt would be difficult to imagine our modern world without plastics – they are a part of everyone’s life and we bump into them on every step, varying from domestic objects to high-tech scientific and medical instruments. Plastics offer many advantages over other materials and have become highly favourable amongst designers and engineers due to their light weight, flexibility, resistance to corrosion, variety of colours, ease of processing etc. However, there are also disadvantages present, which have to be considered. Most plastics as we know them are derived from petroleum, which is a non-renewable resource. Therefore, there lies great demand, to find alternative solutions, especially in recycling as well as using bioplastics, such as PLA. PLA is biodegradable, transparent polymer derived from 100% renewable resources, such as corn and sugar beets. It is used in packaging industry as well as biomedical applications. Due to its renewability, the use of PLA is increasing in many fields, including 3DP. In short, 3DP is an additive manufacturing process, where the design of a product on a computer is converted into a printable file. Then the software slices the object horizontally into layers, so the 3D printer can use this design to add raw material in layers through a nozzle until a whole product is printed. This thesis provides a small-scale solution to the overusing of plastics by recycling. In more detail, the aim of this thesis was to recycle failed 3D printed objects and produce new filament from it for 3DP. The research includes comparative part. In the research, also comparisons are made between pristine PLA and the recycled material, that was produced during this thesis. Thus, 3D printed dog bones from both of the materials were used for tensile testing, during which mechanical properties were tested, in order to see loss of quality of properties after multiple processing procedures. Via using the optimized parameters for extrusion, it is possible to use recycled filament for successfully in 3DP. Even though there were some problems noticed when 3DP, as the filament appeared to be too thick or too thin, the printing process can generally be considered successful. Tensile tests conducted show a decrease in quality comparing printed objects from pristine material to recycled one, but this can be seen as inevitability as the material has been processed several times. With all the different experiments made, the project can be called successful. Nevertheless, further work should be carried to optimize the extrusion parameters, whereas skipping the pelletizing process for decreasing energy consumption. Paying attention to important parameters, including cooling process and zone temperatures in extruding and parameters for 3DP, is important.en
dc.identifier.urihttps://dspace.tktk.ee/handle/20.500.12863/1979
dc.languageet
dc.publisherTallinna Tehnikakõrgkool
dc.subject.classificationEnvironmental Technology--Technology and Waste Managementen
dc.subject.classificationEnvironmental Technology--Technology and Waste Management--Waste Treatment Equipment and Waste Processingen
dc.subject.classificationKeskkonnatehnoloogia--Tehnoloogia ja jäätmehoolduset
dc.subject.classificationKeskkonnatehnoloogia--Tehnoloogia ja jäätmehooldus--Jäätmekäitlusseadmed ja jäätmete ümbertöötlemineet
dc.subject.otherKeskonnatehnoloogia ja -juhtimineet
dc.subject.otherEnvironmental Technology and Managementen
dc.titleÜmbertöödeldud polülaktilisest happest filamendi sobivus kolmemõõtmeliseks printimiseks
dc.title.alternativeFilament Extrusion of Recycled Polylactic Acid and Its Suitability for Three-dimensional Printing
dc.typethesisen
dc.typelõputööet

Failid