Ringraja auto prototüübi moderniseerimine

Kuupäev

2014

Väljaande pealkiri

Väljaande ISSN

Köite pealkiri

Kirjastaja

Tallinna Tehnikakõrgkool

Kokkuvõte

Lõputöö peamine eesmärk oli konstrueerida ringraja auto jaoks sümmeetriline ja väändejäikustele vastupidav raam. Raami mõõtmed pidid selle tegevuse käigus samaks jääma, sest eesmärk oli visuaalselt sama disain jätta. Tutvudes auto ajalooga tuli välja hämmastavaid fakte Eesti ringraja autode ajaloost. Kuidas algas Estonia vormelite elu ja millega tegeleti Tartu Autoremondi tehases. Ringraja auto enese kohta aga jäid ülesse küsimused. Ei suudetud tuvastada kus ja millal antud isend valminud on. Seega ei hakka omanik vana raami enne üles ehitama ega taastama, kui reaalne väärtus on välja uuritud. Tutvudes materjali valikuga ning nõuetega, jõuti järeldusele, et tänapäeval kui on soov ehitada ise ringraja auto ja raha ei ole küsimuseks, siis parim variant on kroom-molübdeen torud. Küll aga antud juhul need ei suuda ennast õigustada. Nimelt ei ole projekti eesmärk minna võistlustele ja rahakoti suurus ei ole ka kiita. Võrreldes olemas oleva raami ning Solid Edge keskkonnas koostatud raami mudeleid võib tõdeda, et raam on küllaltki täpselt sisse joonistatud, sest väändejäikuse analüüs erineb vaid 14,6% võrra. Töö käigus muudeti raami disaini ja lisati tugevus talasid. Kõik muutused ennast ei õigustanud. Näiteks raami ette ossa loodud risti talad tõstsid väändejäikust vaid 0,7% kuid suurendasid sõiduki massi 1,4%. Lõpptulemusena saadud raami väändejäikus on esialgsest raamist 57,2% suurem ning mass on 17,1 kilogrammi ehk 16,9% suurem. Kuid see pole probleemiks, kuna algselt olid sõiduki kerekatte paneelid valmistatud plekist. Tänapäeval on aga lihtsam ja kiirem teha kerekatte paneelid süsinikfiibrist või klaaskiust. Eelnevalt mainitud materjalidest kerekatte paneelide tootmistehnoloogia on suhteliselt sarnane, kuid süsinik fiibrist valmistatud kerekatte paneelid oleksid vastupidavamad kuid kallimad. Samuti on 150 kilosed mootorid jäänud eelmisse sajandisse. Tänapäeval saab 2.4 liitrise mootori asendada väiksema, kergema ning võimsama mootoriga. Ruumi poolest pakuksin lahenduseks välja subaru bokser mootori mille 1,6 kuni 2,2 liitrise töömahuga mootorid arendavad 55-140 kW juba tehase seades. Kaalu poolest erinevad need mootorid vaid paari kiloga. Boxer mootori paigutamise eeliseks on madal massikese ning väiksed mõõtmed. Sümmeetrilise raami valmistamiseks tuleb eelnevalt valmistada täpne rakis. Rakise konstruktsioon tuli samuti valmistada CAD-keskkonnas. Rakis peab olema maksimaalselt tugev, et ei tekiks nihkeid tulenevalt keevis liidetest. Kõige kulukamaks osaks raami tootmise juures saab aga toru otse paika freesimine või laseriga lõikamine.


The main thesis was to construct symmetric tube frame for a racing car. New frame absorbes more torsional stiffnes than the original frame. All the dimensions of the frame had to remain unchanged during this process, because the purpose was not to change the visual design of the car. By examining the history of the car, came out amazing facts about Estonian racing cars history, about how they started manufacturing „Estonia“ formulas and what did they do in TARK. History of the car itself , however, remained unsolved . The research didn’t give any results for identifying the origin of the vahicle. Unable to identify where and when it was built . Owner said that, he is not going to rebuild the old frame, before the real history and value had been determined. In nowadays, if somebody wants to build a racecar and has enough resources, the best material, to build a tube frame, is chrome-molybdenum tubing, because crome-molybdenum has a higher tensile strength than the steel. In the context of this project, it’s not reasonable, due to high price. Compared to the existing frame, frame models, drawn in Solid Edge environment, one can say see that the frame is quite clearly drawn , since torsional rigidity analysis differs only by 14.6% . In this thesis, the frame design was changed and beams were added for rigidity. All the changes did not justify themself, for example, the frame sections where cross beams were designed, it raised rigidity only by 0.7 % but weight was added 1.4% . Final products results show that the frame torsional rigidity is increased by 57.2 % and weight was added 17.1 kg, compared to the original frame – that’s 16.9 % higher than the original. But this is not a problem, because the body panels of the vehicle were originally made of sheet metal. Nowadays , however, is quicker and easier, to make the body panels from carbon fiber or fiber glass . The mentioned materials of body panels manufacturing technologies are relatively similar, but carbon fiber cover panels are more durable and more expensive. Also the 150 kilogram engines are from previous century. Nowadays 2.4 -liter engine can be replaced by a smaller, lighter, and more powerful engine. Perfect engine for this car would be something out from Subaru Boxer engines. In factory setting 1.6 - 2.2 -liter engines produces 55-140 kW in the factory setting . The weight difference between these engines, is just a few kilograms. Boxer engine placement, has the advantage of a low center of gravity and small dimensions. To produce symmetric frame, it needs a support frame, where to weld on. The design of the support frame was also made in CAD environment. The support frame must be strong enough to hold the tubing together, when its welded.

Kirjeldus

Märksõnad

Viide