Kruvikeeramise süsteemi arendusanalüüs

Kuupäev

2023-05-12

Väljaande pealkiri

Väljaande ISSN

Köite pealkiri

Kirjastaja

Tallinna Tehnikakõrgkool

Kokkuvõte

Lõputöö kruvikeeramise süsteemi arendusanalüüsi eesmärgiks oli võtta ettevõtte kruvikeeramis süsteem ning muuta see optimaalsemaks ja multifunktsionaalseks. Analüüsi käigus sooritati kolm testi, selleks, et kruvikeeramis süsteem suudaks tuvastada etteantud komponendi ja sellele kruvi külge kruvida, olenemata asendist ja paiknemise positsioonist. Arendusanalüüsi käigus teostati kolm testi, mille käigus testiti ettevõtte poolt saadud koodi ehk Test 1 Kood, seejärel valiti välja laser, mida testiti kahel viisil ehk test 2, laseri testimine 1 ja test 3, laseri testimine 2. Kõik testimised viidi läbi Optimo Robotics-is ning kasutati UR10e ja nende kruvikeeramis süsteemi. Test 1 Kood seisnes koodi katsetamisel, mis oli loodud juhendaja Harti Vait poolt. Selle katsetamiseks tuli määrata robotil kolm muutuvat punkti tasapinnal ja kolm kindlaks jäävat punkti tasapinnal. Testi sooritamiseks pidi muutma tasapinda ja muutuvaid punkte, selleks tõsteti või liigutati tasapinda erinevate nurkade all. Kolm mitte- muutuvat punktid jäid samaks. Test loeti edukaks kui tasapinda ja muutuvaid punkte muudeti, aga mitte- muutuvad jäid samaks ning koodi käivitamisel ei põrganud kruvikeeramise süsteem vastu testpinda ja ennast vaid läbis etteantuid punkte. Test 2 Laseri testimine 1 eesmärk oli kindlaks teha, kas väljavalitud laser suudab 120°-60° kraadiste nurkade alt tuvastada erinevaid materjale. Test loeti edukaks, kui laser suutis tuvastada vähemalt nelja erinevat materjali ja vähemalt 90° pealt. Kõige paremini tuvastas laser alumiiniumi, anodeeritud alumiiniumi, polüoksümetüleeni ja polüetüleenvahtu. Probleemseteks kohtadeks olid läikiva pinnaga materjalid- vineerplaat, plastmasskaas ja töödeldud plastik. Selle testi põhjal sai kindlaks teha, mis materjale saaks edaspidi kasutada ja mis on laseri võimekuse tase. Test 3 Laseri testimine 2 eesmärgiks oli vaadelda kui kõrgelt on laseril juba nägemis tuvastus. Testi sooritamiseks võeti teras-pind ja laseri kõige kaugem tuvastamispunkt sellest. Mõõtmisi hakati sooritama 81cm kauguselt iga sentimeetri 10mm täpsusega. Test oli edukas, kui mõõtetäpsus jäi samaks või muutus paremaks. Arendusanalüüsi järeldusel võib kindlalt väita, et kruvikeeramise süsteemi on võimalik muuta optimaalsemaks. Koodi kasutades saab algse programmi ja roboti seadistamise muuta kiiremaks. Kasutades laserit saab süsteemi muuta multifunktsionaalsemaks ning olenemata kõrgusest ja nurgast robotsüsteem suudab tuvastada etteantud kohti ja toimetada selle piires.


The final thesis on „The development analysis of the screwdriving system“ was written by a fourth-year student of the robotics major at Tallinn University of Technology, who did the development analysis for Optimo Robotics OÜ. The aim of the thesis is to take the Optimo Robotics screwdriving system and make it more optimal and multifunctional. In the development analysis, what the current product can do, what it could do, and what it should do and use, so that the desired development leads to the required result, is undertaken. The current screwdriving system works by being given a component and a screw. Everything in the program is written in detail to perform the work, and for every minor change, the entire configuration must be redone. The analysis should identify a solution or solutions that can make the system better and simpler. The company has given certain requirements, what and how the robot should be able to do in the future. The main desire is that it should be multifunctional, quickly programmable, and able to work with different materials and from different angles. The result is a screwdriving system that can detect a given component and screw to it, regardless of position and location. During the development analysis, three tests were performed, in which a script provided by the company was tested, i.e., Test 1 Script, then a laser was selected, which was tested in two ways, i.e., Test 2, Laser Testing 1 and Test 3, Laser Testing 2. All testing was performed at Optimo Robotics and used the UR10e and their screwdriving system. Test 1 Script consisted of testing a script created by instructor Harti Vait. To test this, the robot had to be assigned three variable points on the plane and three fixed points on the plane. To perform the test, the plane and changing points had to be changed, for this the plane was raised or moved at different angles. The three non-changing points remained the same. The test was considered successful if the plane and the changing points were changed, but the non-changing ones remained the same, and when the program was started, the screwdriving system did not hit the test surface and only passed through the predetermined points. Test 2 Laser testing 1 aimed to determine whether the selected laser can detect different materials from angles of 120°-60° degrees. The test was considered successful if the laser could detect at least four different materials and from at least 90°. The laser detected aluminum, anodized aluminum, polyoxymethylene and polyethylene foam best. The problem areas were materials with a shiny surface - plywood, plastic cover, and processed plastic. Based on this test, it was possible to determine what materials could be used in the future and what the level of laser capability would be. Test 3 The purpose of laser testing 2 was to see how high the laser's vision detection is. To perform the test, the steel surface and the farthest detection point of the laser were taken from it. Measurements were taken from a distance of 81 cm with an accuracy of 10 mm for each centimeter. The test was successful if the measurement accuracy remained the same or improved. At the conclusion of the development analysis, it can be confidently stated that the screwdriving system can be made more optimal. By using a script, the initial program and robot setup can be made faster. By using a laser, the system can be made more multifunctional, and regardless of the height and angle, the robot system can detect predetermined places and deliver within it.

Kirjeldus

Märksõnad

Mehaanika::Robotitehnika

Viide