Asfaldi paigaldamise maksumuse sõltuvus tee geomeetriast

Kuupäev

2014

Väljaande pealkiri

Väljaande ISSN

Köite pealkiri

Kirjastaja

Tallinna Tehnikakõrgkool

Kokkuvõte

Käesolev uurimustöö tutvustas asfaldi paigaldamisega seotud kulusid kahel suurel liiklussõlmel. Andmete kogumine ja analüüs teostati töö autori poolt. Mõlema objekti asfaldi paigaldamise töid juhtis samuti töö autor, seega võib väita, et algandmed on tõesed ja kõik eeldused töö õigeteks järeldusteks olid loodud. Paigaldamise käigus koostati asfalteerimise vahetuse aruanded ja päevaraportid. Nendest kahest dokumendist saadi antud töö algandmed. Andmed sisestati Microsoft Exceli programmi tabelisse selliselt, et oleks võimalus andmete väljavõte eraldi kulude, asfaltsegu margi, pindala ja tee-osa kaupa, kuhu asfalt paigaldati. Töö esimeses pooles anti ülevaade, millistel alustel kujuneb asfalteerimise hind. Esmalt seletati lahti erinevate paigaldamiseks vajalike masinate kasutamine ja tööspetsiifika. Seejärel analüüsiti eraldi iga masina kulusid. Selgus, et paigaldusmasinatest on kõige kulukam laotur, moodustades kogu paigaldusmasinate kulust pool. Seejärel vaadeldi paigaldusmasinate kulusid koos tööjõukulude ja asfaldiveo kuludega. Andmeid analüüsides järeldus, et kogu paigalduskuludest moodustasid peaaegu pool transpordi kulud ja teise poolemeeskonna palgakulud ning masinate kulud kokku. Seega selgus, et 50 % kuludest on antud töö tulemuse mõjusfääris, mis sõltuvad otseselt paigaldusele kuluvast ajast. Järgnevas etapis tutvustati objekte ning seletati lahti peatee ja kõrvaltee jaotamise valiku põhimõtted. Andmemahtudest pärinevad paigalduspäevad jaotati põhitee andmeteks või kõrvaltee andmeteks. Pärast andmete teeosade kaupa jagamist toimus jaotamine asfaltsegu margi põhiselt. Lisaks jäi väljavõtte võimalus pindala põhiselt. Lõpuks viidi eelpool mainitud andmed kokku selliselt, et tekkis kogukulu igale segumargile ja teeosale koos pindalaga. Jagades kogukulu pindalaga saadi tulemuseks kulu ruutmeetrile, millest sai kogu edasise ülevaatuse alus. Kulu ruutmeetrile arvutati välja mõlema objekti pea- ja kõrvalteele, igale asfaldikihile eraldi ning kõikidele kihtidele kokku. Neid andmeid analüüsides sai töö autor kinnitust sissejuhatuses väidetud teadmisele, et kõrvalteele asfaldi paigaldamine on kallim kui peateele. Tartu Lääne objektil oli kattekihtide konstruktsioon mõlemal teeosal ühesugune, seega oli ruutmeetri kulu tekkimine samadel alustel. Tulemuseks oli peatee ruutmeetrikulu 0,57 eurot ja kõrvalteel 0,66 eurot. Kõrvaltee osutus Tartu Lääne objektil 1,15 korda kallimaks. Luige liiklussõlmes oli kattekihtide konstruktsioon pea- ja kõrvalteel erinev. Peateel oli neli kattekihti, kõrvalteel kaks. Peatee nelja kattekihi kulu ruutmeetrile kokku oli 0,67 eurot ja kõrvaltee kahekihilise konstruktsiooni oma 0,92 euro, erinevus sellisel juhul 1,38 kordne. Kuna kahe- ja neljakihilise konstruktsiooni võrdlus ei ole korrektne, siis arvutati välja peatee pealmise kahe kihi ruutmeetrikulu ja see oli 0,56 eurot. Võrreldavate kattekihtide kulu on seega 1,64 korda suurem kõrvalteel. Peatee kulu ruutmeetrile on mõlema objekti puhul samas suurusjärgus, kuid kõrvaltee sama kulu on Luige objektil palju suurem kui Tartu Lääne objektil. Põhjus peitub selles, et Luige objekti kõrvaltee paigaldamine toimus liikluse all ja päevane tööfront oli piiratud. Uurimustöö peaeesmärgiks püstitatud kindla kordaja leidmine jäi saavutamata, sest uurimisobjektid olid liialt erinevad. Tartu Lääne objekti kõnealune kordaja oli 1,15 ja Luige objekti 1,64. Sellise erinevuse juures ei ole võimalik põhjapanevaid järeldusi teha. Samas ei saa väita, et tulemusena saadud kordajad on kasutud, sest need on tekkinud reaalsete kulude põhjal ja samalaadsetel objektidel peaks tulemus olema samas suurusjärgus.


The subject of this final paper is dependence of asphalt laying costs on the geometry of road. The author had to choose this subject as it was necessary for him to prepare a budget for asphalt lay promptly and with more accuracy than it had been done before. The issue is that laying asphalt for road junctions should be done at least in two single layers. In a sense of asphalt the process for junction is different from that for the main and bypass roads. Winning a public-sector contract is one of a few opportunities for business in Estonia to get its own portfolio object, construction of which could last for more than a year. In order to compete in a tender for public contract it is necessary to draw up a carefully planned though beneficial offer. Correct cost calculation will eliminate tensions between the customer and contractor when disputes arise in regard with either class of the material or cost-efficiency. Some businesses may have the fixed unit prices which simplify budgeting. Generally unit prices are based on efficiency. Object is divided into sectors and each sector is assigned a time prognosis for work performance. For time units, e.g. workdays, the price is calculated, which in the case, includes per diem costs of the asphalt laying team. Time duration of object is multiplied by a price of unit and thus the cost of object is estimated. Daily output is easily calculated for straight roads when asphalt laying is not delayed. You have to take into consideration productivity of the asphalt plant, to divide it by productivity in aggregated bulk weight provided by the norms, and you will receive the time for road laying. The purpose of this final paper was to work out a multiplier which can be used for getting cost of a square metre of bypass road by multiplying cost of a square metre of main road. I.e., to learn how much more money is spent on ramps and bypasses than on the main road. All initial data was collected specially for the purpose of this work in order to calculate the exact costs of one square metre. The data was collected during asphalt laying in Tartu city, on Lääne 4 construction site and Luige junction. On every day of asphalt laying a shift report was made containing work area description, laid square metres and used amount of asphalt mixture. In addition, daily report was completed where main costs related to asphalt laying were recorded in a table. The final paper shows the man power expenses, the expenses on asphalt laying machines and asphalt carrying trucks. Data basing was done into Microsoft Excel sheet so that it would be possible to get separate statements of costs, asphalt class, area and road by sections where asphalt was laid. Data analysis demonstrates that asphalt carrying makes a half of all road laying costs. The above-mentioned data was added in order to get the total cost of the main road and bypasses area. The area was divided by the cost and the cost of a square metre was received as a result. The square metre cost was calculated both for the main and bypass roads, separately for each asphalt layer and total for all layers. The Lääne object in Tartu features the same construction of layers on both sectors of road. As a result, a square meter of 4-lay road carpet was 0.57 euro on the main road and 0.66 euro on the bypass roads. Bypass road was 1.15 times more expensive. The construction of road carpet at Luige junction was different for the main road and the bypass roads, but, considering the equal data of layers, a multiplier of 1.64 was received. A square meter of the main road carpet was 0.66 euro and 0.92 euro on the bypass road. Luige junction multiplier appeared to be bigger as it was used for traffic at the time of laying asphalt on the bypass road which restricted the work performance. The multipliers received during the research were too different for making basic conclusions. However, finding the multipliers was useful as they reflected the real costs. Presumeably, the multipliers will be used in relation to the similar objects.

Kirjeldus

Märksõnad

Viide