Radoonitõkkekilede omaduste uurimine
Kuupäev
Autorid
Väljaande pealkiri
Väljaande ISSN
Köite pealkiri
Kirjastaja
Kokkuvõte
Töö käigus selgitati radooni olemust ning seda, kuidas ja millistel erinevatel viisidel on võimalik
ennast radooni eest kaitsta. Lisaks selgitati ka radooni kahjulikku mõju inimese organismile.
Töö eksperimentaalseks sisuks oli katse, mille käigus määrati radoonitõkkekile efektiivsust
radooni tõkestamisel. Selle katse tingis asjaolu, et Eesti turul kättesaadavatel
radoonitõkkekiledel ei ole üldjuhul sertifikaatides antud teavet radooni ega selle tõkestamise
parameetrite kohta.
Katse läbiviimiseks kasutati TTK-s valminud radooni difusiooni mõõtmise seadet, mis koosneb
radoonikambrist, mõõtekambrist, mõõteseadmest AlphaE, mõõteseadmest Radon Eye Plus2,
õhupumbast ja muudest vajalikest komponentidest. Katsekehadeks olid radoonitõkkekile
Radonsparre 30 cm läbimõõduga kilest väljalõigatud ümargused kettad. Töö käigus viidi läbi
2 mõõtmist, kus ühel juhul oli radooniallikaks 5 raadiumi sisaldusega tseoliidikotti ning teisel
juhul 10 raadiumi sisaldusega tseoliidikotti. Katsega alustati 5 aprillil ning katse kestis kuni
24 aprillini. Selle aja vältel mõõdeti katseseadmetes nii radoonikambris oleva radooni kui ka
radooni mõõtekambris olevat radooni aktiivsuskontsentratsiooni käiku. Lisaks mõõdeti ka
katse temperatuur ning õhuniiskus. Katse käigus saadud tulemuste põhjal määrati katsekilede
radooni difusioonitegur. Lisaks on difusioonitegur määratud ka kuue erineva kile korral, mille
algsed mõõtmistulemused olid varasemalt juba olemas. Need tulemused selles töös on ainult
illustatiivsed, sest mõõtmised on toimunud varem ning puuduvad korrektsed andmed
katsetingimuste kohta. Töös on need sisse toodud vaid võrdluseks uuritava radoonitõkkekile
Radonsparre ja teiste kilede vahel.
Katse tulemusel arvutati radoonitõkkekile Radonsparre 0,4 mm difusiooniteguriks
2,50E-11 m²/s ja 2,72E-11 m²/s, mis on samas suurusjärgus eelnevate teiste kilede
mõõtmisel saadud väärtustega. Radoonitõkkekile Blue Seal 0,4 mm difusiooniteguriks on
2,29E-11 m²/s. Kile 1 0,3 mm difusiooniteguriks on 2,18E-11 m²/s ja Kile 2 0,35 mm
difusiooniteguriks on 2,90E-11 m²/s. Võrreldes aga radoonitõkkekile Radonsparre ja
betoonikile 0,2 mm difusiooniteguriga 3,97E-11 m²/s tuleb nende kahe vahe juba 1,6 kordne,
mis tähendab et tavalised polüetüleenist betoonikiled ei täida kindlasti radoonitõrje eesmärki
nii nagu spetsiaalne radoonitõkkekile. Võrdluses kauakestva kilega 0,175 mm mille
difusiooniteguriks tuli 5,48E-11 m²/s on näha, et vahe radoonitõkkekilega Radonsparre on 2,2
kordne. Võrdlusest saame järeldada, et tavalised kiled ei suuda täita radoonitõkkekile rolli ning
radoonitõkke eesmärgil peab kasutama selleks eesmärgiks valmistatud radoonitõkke kilet.
33
Tuleb arvestada asjaoluga, et selle töö käigus olid kõik katsed läbi viidud laboritingimustes.
Reaalses olukorras tuleb arvestada muude teguritega mis võivad mõjutada radoonitõkkekile
efektiivsust. Näiteks võib üheks suureks mõjuteguriks olla suurem rõhkude erinevus kummalgi
pool kilet. Teiseks kile paigaldamise kvaliteet, sest just sellest tuleneb radoonitõkkekile võime
hoida radoon sisenemast hoone siseruumidesse. Lisateguriks võib olla hoone ebatasane
vajumine, mille korral võib kile lihtsalt rebeneda ning seega pääseks radoon rebenenud kohast
läbi ning radoonitõkkekile oleks kasutu.
Reaalses olukorras tuleb arvestada ka paljude muude erinevate momentidega
radoonitõkkekile paigaldamisel ning selle efektiivsuse hindamisel. Kindlasti tuleb läbi mõelda
ka see aspekt, et kas radoonitõkkekile on just kõige efektiivsem radoonitõrje variant
konkreetse hoone puhul, sest üldjuhul olemasolevale hoonele on radoonitõkkekile
paigaldamine selliselt raskendatud, et ei jääks ühtegi pragu, kust radoon läbi ei pääseks. Kui
aga kile paigaldatakse korralikult ning rebenemisi ega pragusid ei teki, siis peaks see
teoreetiliselt hoidma radooni hoone siseruumidesse sattumast. Kindlasti tuleb arvestada
radooniohtlikes piirkondades radooni riskiga ning tõkestada maksimaalselt, sobivaimal viisil
radooni võimalik pääsemine hoone siseruumidesse.
As time progresses, all products and services become more and more safe and economical for us. But something we cannot change with our own actions are natural threats to our environment. We cannot even think about many of them or protect ourselves from them, especially when the danger may be in our own home, work or school. One such danger is radon, which certainly many people are not aware of. Radon is a tasteless, odorless and colorless gas that is very dangerous to human health, causing various cell mutations and cancer. We can come into contact with radon mostly indoors, for example at home and at work. Radon mostly finds its way into the interior of the building through the non-tightness of the part of the building in contact with the soil, which are mostly cracks in the foundation or poorly made ducts. Therefore, the access of radon to the interior of the building should be prevented, and a radon barrier film is one of the possible means of radon control. The radon barrier film is generally installed on the foundation of the building or between the insulation layers of the floor. The radon barrier film must be installed in such a way that there are no possible leaks, cracks and openings through which radon could pass. The radon barrier film is generally only suitable for new buildings, as it is generally difficult or even impossible to install a radon barrier film on existing buildings in such a way that there would no cracks or openings. In the course of this work, the properties of the radon barrier film have been studied to find out whether and to what extent the radon barrier film can prevent the spread of radon into the building. In addition, the certificates of radon barrier films generally lack information about the ability to prevent the spread of radon. Thus, a diffusion measurement experiment was conducted to investigate the properties. The radon diffusion measuring device made at TTK University of Applied Sciences was used to conduct the experiment, which consists of a radon chamber, measuring chamber, measuring device AlphaE, measuring device Radon Eye Plus2, air pump and other necessary components. The test objects were round discs cut out of the 30 cm diameter Radonsparre radon barrier film. During the work, 2 measurements were carried out, where in one case the source of radon was 5 zeolite bags containing radium and in the other case 10 zeolite bags containing 35 radium. The experiment started on April 5 and lasted until April 24. During this time, both the radon in the radon source container and the course of the radon activity concentration in the radon receiver container were measured in the test equipment. In addition, the temperature and humidity of the experiment were also measured. Based on the results obtained during the experiment, the radon diffusion coefficient of the test films was determined. In addition, the diffusion coefficient has also been determined for six different films, the original measurement results of which were previously available. These results in this work are only illustrative because the measurements have taken place earlier and there is no correct data on the experimental conditions. In this work, they are introduced only for comparison between the studied radon barrier film Radonsparre and other films. As a result of the test, the radon barrier film Radonsparre 0.4 mm was calculated to have a diffusion coefficient of 2.50E-11 m²/s and 2.72E-11 m²/s, which are in the same order of magnitude as the values obtained by previous measurements of other films. The diffusion coefficient of Blue Seal 0.4 mm radon barrier film is 2.29E-11 m²/s. Film 1 0.3 mm has a diffusion coefficient of 2.18E-11 m²/s and Film 2 0.35 mm has a diffusion coefficient of 2.90E-11 m²/s. However, comparing the radon barrier film Radonsparre and the construction film 0.2 mm diffusion coefficient of 3.97E-11 m²/s, the difference between the two is already 1.6 times, which means that ordinary polyethylene construction films certainly do not fulfill the purpose of radon control as well as the special radon barrier film. In comparison with the long-lasting film 0.175 mm, which had a diffusion coefficient of 5.48E-11 m²/s, it can be seen that the difference with the radon barrier film Radonsparre is 2.2 times. From the comparison, we can conclude that ordinary films cannot fulfill the role of a radon barrier film, and for the purpose of radon barrier, a radon barrier film made for this purpose must be used. It must also be taken into account that in the course of this work, all experiments were carried out in laboratory conditions, and thus the results may differ from what could be in real conditions. In addition, other factors that can affect the effectiveness of the radon barrier film must also be taken into account in the real situation. For example, one of the big influencing factors can be how high-quality the film is installed, because it is precisely from this that the effectiveness of the radon barrier film to prevent radon infiltration into the interior of the building comes from. Another factor could be the uneven subsidence of the building, in which case the film could simply tear, and as a result, radon would pass through the torn place and the radon barrier film would be useless. Therefore, in a real situation, many other different factors should also be taken into account when installing a radon barrier film and evaluating its effectiveness.