Varikatuse projekteerimine

Kuupäev

2019

Väljaande pealkiri

Väljaande ISSN

Köite pealkiri

Kirjastaja

Tallinna Tehnikakõrgkool

Kokkuvõte

Lõputöös on teostatud katuse profiilpleki, kergroovide ja terasest sõrestike kandevõimearvutused ning on kujundatud jäigastussüsteem varikatuse stabiilsuse tagamiseks. Sisejõud varrastes on leitud arvutiprogrammis Autodesk Robot Structural Analysis 2018. Graafilise osa koostamiseks on kasutatud projekteerimistarkvara Tekla Structures 20.1 ja Autodesk AutoCAD 2018. Et töö mahtu piirata, ei ole kõigi sarnaste elementide kandevõimearvutused kirjalikult esitatud, vaid osa elementide kontrollid on teostatud arvutustarkvaras. Katuse profiilplekiks on kavandatud Ruukki 0,9 mm paksune kandev profiilplekk T45-30L-905, mis toetub Ruukki 250 mm kõrgustele 2,5 mm paksuse seinaga Z-kergroovidele. Nii abi- kui peasõrestikud on kujundatud K-võrguga sõrestikena ning kõikide varraste ristlõikeks on valitud toruprofiilid SHS, millede läbimõõdud on vahemikus 50...250 mm ning seinapaksused vahemikus 3...10 mm. Elementide terase tugevusklass on S355J2. Katuse jäigastamiseks on kavandatud sidemete süsteem sõrestike ala- ja ülavööde vahele. Sidemetega vähendatakse sõrestike surutud nii ala- kui ülavööde nõtkepikkusi ning nende abil suunatakse varikatusele horisontaalselt mõjuv tuulekoormus postidele. Koormustest on põhjalikumalt vaadeldud varikatustele tuulekoormuse määramist standardi EVS-EN 1991-1-4 järgi, kuna selle osa kohta on eestikeelseid arvutusnäiteid keeruline leida ning standard võib olla mitmeti mõistetav. Töös on püütud standard lahti mõtestada ning määrata tuulekoormus nii, et on kasutatud kõiki standardi poolt pakutavaid võimalusi võimalikult ökonoomse lahenduse saamiseks.


The aim of this graduation thesis Design of a Canopy Roof is to design a bracing system and perform calculations for load-bearing steel roof structures for a canopy roof in the ultimate limit state. The structure is a two-bay canopy with the length of 100 m, width of 50 m and the height of 10 m. The steel roof trusses are supported by reinforced concrete columns with the spacing of 25 m in all directions. The columns however are not designed in this graduation thesis. The elements to be designed are load-bearing roof sheeting, Z-section purlins that support the sheeting and steel trusses with two different types of geometry. A 3D calculation model was constructed in Autodesk Robot Structural Analysis 2018 software in order to determine forces in the elements to be designed. Manual calculations are then performed for most elements but similar elements (such as many bracing members of trusses) are designed in the software. Steel elements are designed to the Eurocode 3 and loads are determined according to Eurocode 1. In order to brace the roof, bracing elements are designed in plane of both top and bottom chords of the trusses. Since light canopy roofs are subjected to wind forces that tend to lift the roof, which can cause significant compressive forces in bottom chords of the trusses, the buckling lengths of the chords need to be reduced – this is achieved with bracings. Bracings are also used to direct horizontal wind forces from all sides to the columns. A secondary goal of the graduation thesis is the determination of wind loads to a canopy roof structure according to EN 1991-1-4, since worked examples for this section of the standard are difficult to find both in Estonian and in English. The aim was to determine the wind loads in the most economic way by using all the possible methods provided by EN 1991-1-4.

Kirjeldus

Märksõnad

Viide